从铜转炉烟尘中制备高纯氯氧化铋工艺研究
Study on Process for Preparing High Purity Bismuth Oxide from Copper Converter Dust
摘要: 本文采用“稀硫酸浸出–氧化剂 + 稀硫酸浸出–固相预脱铅–氯盐浸出–浸铋液中除铅砷–沉铋”工艺处理铜转炉烟尘制备氯氧化铋。首先,前两步浸出,均在L/S = 2: 1,t = 1 h,T = 60℃的条件下水浴浸出,使大部分可溶解元素如Cu、Zn、Sn等进入溶液,Pb、Bi等留在渣中。其次,在L/S为5:1,室温下使用pH值为4.5的缓冲溶液,处理二次浸铜渣,进行固相预脱铅;再次,用改性试剂处理浸铋液,去除铅砷。结果表明,室温条件下,盐酸浓度为1 mol∙L−1,氯化钠浓度为2.5 mol∙L−1,液固比为5:1时,铋的平均浸出率达到92%,而浸出液浓度为0.20~0.30 mol∙L−1。用质量分数为1.66%的Na2CO3溶液调节酸浸液的pH值由0.5至3.0左右,沉铋。综上几步,此工艺能将有价金属元素铜、铋有效回收利用,铜的浸出率由原来的40%提高到70%以上;砷在氯氧化铋的含量从3.80%降到0.03%,去除率达到99.21%;铅在氯氧化铋的含量从3.46%降到0.189%;去除率达到96.39%;最后,沉铋后的氯盐溶液返回处理二次浸铜渣。
Abstract: The process of “dilute sulphuric acid leaching-oxidant + dilute sulphuric acid leaching-initial delead from solid phase-chloride leaching-removal of lead and arsenic from dip bismuth solution- bismuth precipitation-dearsenication” was used for preparation of high-purity bismuth oxychloride from copper converter flue dusts. Firstly, dilute acid and manganese dioxide + dilute acid mixture were used as leaching agent, under the condition of 60˚C water bath, the liquid-solid ratio 2:1, leaching 1 h respectively, so that most solubility elements such as Cu, Zn, Sn could enter solution and lead, and bismuth stays in slag. Secondly, the configured solution is used with pH = 4.5 at room temperature. Under the condition of solid-liquid ratio of 5:1, treated with secondary leaching of copper residue, the purpose is to take off the lead for solid phase. Thirdly, bismuth leaching liquid was treated with modified reagents, in order to reduce metal elements of lead and arsenic content in the solution. The results showed that acid leaching under the condition of the room temperature, 1 mol∙L−1 HCl, 2.5 mol∙L−1 NaCl, and the liquid-solid ratio 5:1, was feasible, and the average extraction rate of bismuth reached 92%, while the leaching solution concentration of bismuth was 0.20 - 0.30 mol∙L−1. The pH value of leaching solution was adjusted with the sodium carbonate solution with the mass fraction of 1.66%. With the addition of sodium carbonate solution, the pH value increased from 0.5 to 3. The purpose is to deposit bismuth. In a comprehensive view, through this process, copper and bismuth as the valuable metals get an effective recycling. The leaching rate of copper was increased from 40% to 70%. This process can effectively separate the Bi from other elements. The content of arsenic in bismuth oxide decreased from 3.80% to 0.03%, and the removal rate reached 99.21%. The content of lead in bismuth oxide decreased from 3.46% to 0.189%, and the removal rate reached 96.39%. Finally, solution after Bi precipitation is treated with hydrochloric acid and sodium chloride mixed solution, and the solution is returned to leaching bismuth.
文章引用:李祥, 张兴旺, 马瑞新, 李士娜, 张晓勇, 杨帆, 赵卫双. 从铜转炉烟尘中制备高纯氯氧化铋工艺研究[J]. 冶金工程, 2016, 3(4): 143-152. http://dx.doi.org/10.12677/MEng.2016.34020

参考文献

[1] 汪立果. 铋冶金[M]. 北京: 冶金工业出版社, 1986.
[2] 唐安平, 秦毅红. 钒酸铋颜料的制备研究[J]. 稀有金属, 2003, 27(1): 199-201.
[3] 徐铁峰, 张旭东, 聂秋华, 等. 超宽带荧光特性的铋离子掺杂玻璃研究进展[J]. 稀有金属, 2006, 30(6): 857-862.
[4] 冯春, 于光华, 李宁, 龚奎, 李宝河. 利用Bi原子的调控作用制备快速有序的L10 -FePt薄膜[J]. 稀有金属, 2012, 36(3): 419.
[5] 张林, 王恩刚, 王慧芹, 康智强, 左小伟, 赫冀成. 水平稳恒磁场对Al-Bi偏晶合金中富Bi相迁移和分布的影响[J]. 稀有金属, 2010, 34(6): 791.
[6] 李卫, 周科朝, 杨华. 氧化铋的应用研究进展[J]. 材料科学与工程学报, 2004, 22(1): 154-156.
[7] Vitkova, M., Ettler, V., Hyks, J., Astrup, T. and Kribek, B. (2011) Leaching of Metals from Copper Smelter Flue Dust (Mufulira, Zambian Copperbelt). Applied Geochemistry, 26, S263-S266.
http://dx.doi.org/10.1016/j.apgeochem.2011.03.120
[8] 王成彦, 邱定蕃, 江培海. 国内铋湿法冶金技术[J]. 有色金属工程, 2001, 53(4): 15-18.
[9] 杨新生. 湿法炼铋工艺过程浅析[J]. 江西有色金属, 1994, 8(4): 41-43.
[10] 郑国渠, 唐谟堂, 赵天从. 氯盐体系中铋湿法冶金的基础研究[J]. 中南大学学报(自然科学版), 1997(1): 34-36.
[11] 李玉鹏, 刘春艳, 吴绍华, 黄燕. 金属铋制备方法研究现状及发展趋势[J]. 湿法冶金, 2007, 26(3): 118-122.
[12] 马尧. 氧化锰矿和硫化酮矿酸浸生产海绵铜与化学二氧化锰的研究[J]. 中国锰业, 1999(2): 29-32.
[13] 佟永顺. 铜转炉烟灰处理工艺研究[J]. 有色矿冶, 1999(1): 44-47.
[14] 赵玉娜, 朱国才. 白烟灰浸出液砷与锌的分离与回收[J]. 矿冶, 2006, 15(4): 84-87.
[15] 王福林. 从铜转炉电收尘中回收铋的研究[J]. 重有色金属, 1980(10): 24.
[16] 唐谟堂. 三氯化铋水解体系的热力学研究[J]. 中南大学学报(自然科学版), 1993(1): 45-51.
[17] 徐本军, 覃文庆, 邱冠周. 方铅矿和软锰矿两矿法浸出工艺的研究[J]. 矿产保护与利用, 2005(3): 29-33.
[18] 孔繁珍. 从高砷含铋物料中回收铋[J]. 湿法冶金, 2000,19(3): 54-58.
[19] 张兴旺. 铜冶炼转炉烟尘中有价金属提取的研究与实践[J]. 硫酸工业, 2015(4): 38-41.