AAM  >> Vol. 5 No. 4 (November 2016)

    一类KdV型方程的新解析解
    New Analytical Solutions of a Class of KdV-Type Equation

  • 全文下载: PDF(484KB) HTML   XML   PP.598-604   DOI: 10.12677/AAM.2016.54069  
  • 下载量: 1,067  浏览量: 4,438   科研立项经费支持

作者:  

孙旖菲,庞宇:北方工业大学理学院,北京

关键词:
行波约化法指数函数方法KdV型方程Traveling Wave Reduction Method Exp-Function Method KDV-Type Equation

摘要:

我们首先利用行波约化法将一类KdV型方程约化为常微分方程,然后运用指数函数法,并借助于数学软件Mathematica,获得了该方程丰富的精确解析解,并绘制解的图像。

We first use traveling wave reduction method to transform a class of KdV-type equation to ordinary differential equation, and then apply Exp-Function method as well as symbolic software Mathematica to obtain new accurate analytical solutions of the equation under study. Moreover, we draw the graphs of such solutions.

文章引用:
孙旖菲, 庞宇. 一类KdV型方程的新解析解[J]. 应用数学进展, 2016, 5(4): 598-604. http://dx.doi.org/10.12677/AAM.2016.54069

参考文献

[1] 王明亮, 李志斌, 周宇斌. 齐次平衡原则及其应用[J]. 兰州大学学报: 自然科学版, 1999(3): 8-16.
[2] 范恩贵, 张鸿庆. 非线性孤子方程的齐次平衡法[J]. 物理学报, 1998, 47(3): 353-362.
[3] 张金良, 王明亮, 王跃明. 推广的F-展开法及变系数KdV和mKdV的精确解[J]. 数学物理学报, 2006, 26(3): 353- 360.
[4] 刘式适, 刘式达, 傅遵涛, 等. Jacobi椭圆函数展开法及其在求解非线性波动方程中的应用[J]. 物理学报, 2001, 50(11): 2068-2073.
[5] Li, L.-X. and Wang, M.-L. (2009) The (G′/G)-Expansion Method and Travelling Wave Solutions for a Higher-Order Nonlinear Schrödinger Equation. Applied Mathematics & Computation, 208, 440-445.
http://dx.doi.org/10.1016/j.amc.2008.12.005
[6] Zhang, S., Dong, L., Ba, J.M., et al. (2009) The (GG)-Expansion Method for Nonlinear Differential-Difference Equations. Physics Letters A, 373, 905-910.
http://dx.doi.org/10.1016/j.physleta.2009.01.018
[7] Zhang, J., Wei, X. and Lu, Y. (2008) A Generalized -Expansion Method and Its Applications. Physics Letters A, 372, 3653-3658.
http://dx.doi.org/10.1016/j.physleta.2008.02.027
[8] He, J.-H. and Wu, X.-H. (2006) Exp-Function Method for Nonlinear Wave Equations. Chaos, Solitons and Fractals, 30,700-708.
http://dx.doi.org/10.1016/j.chaos.2006.03.020