基于相变金属铜的固体氧化物储能电池的热能管理
Heat Management Based on Phase-Change Metal Copper in Solid Oxide Cell System
DOI: 10.12677/SG.2016.66040, PDF, HTML, XML, 下载: 1,745  浏览: 3,713  国家自然科学基金支持
作者: 甘丽珍*, 刘明周:合肥工业大学机械工程学院工业工程系,安徽 合肥
关键词: 固体氧化物储能电池热能管理相变金属Solid Oxide Cell System Heat Management Phase Change Metal Copper
摘要: 本论文通过模拟仿真模拟燃料电极支撑的Ni-YSZ/YSZ/LSM平板型固体氧化物电池储能系统,基于相变金属铜进行热能存储与利用,研究该电池系统的电能循环效率。研究发现,开路电压对于荷电状态的依赖要比对系统压力更为明显,平板型电池的极化电阻主要来源于金属电极的活化极化。系统气体和部件等热量平衡可显著影响系统运行温度,因此通过系统保温措施可减少热能损失从而提高系统效率。通过利用金属铜将燃料电池模式下的热能进行存储,而在电解池模式下释放热能以维持电池系统运行,电能的热能循环效率可高达80%以上,满足商业化大规模批量化生产要求的标准。
Abstract: In this paper, we investigate the heat storage and utilization based on copper metal tank to en-hance the electricity cycling efficiency in the solid oxide cell system with a configuration of Ni-YSZ/ YSZ/LSM. It is found that the OCVs of this planar solid oxide cell system rely more on the state of chare than system pressure and the cell polarization resistances mostly come from the fuel electrode polarization. The system temperature can be effectively changed by the heat balance of gas, cell component and operation circumstance. While the heat loss in the system has a huge influence on the system temperature and electricity cycling efficiency. It is found that the electricity cycling efficiency can reach above 80% of the commercial mass production standards when copper tank is utilized for heat storage in fuel cell mode and heat utilization in electrolysis cell mode.
文章引用:甘丽珍, 刘明周. 基于相变金属铜的固体氧化物储能电池的热能管理[J]. 智能电网, 2016, 6(6): 360-375. http://dx.doi.org/10.12677/SG.2016.66040

参考文献

[1] 谢奎. 陶瓷膜能量转换电池过程与相关材料研究[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2010.
[2] 梁明德. 固体氧化物高温电解池材料制备研究[D]: [博士学位论文]. 沈阳: 东北大学, 2009.
[3] 武国剑. 固体氧化物电解池陶瓷基复合阴极的制备及电化学过程研究[D]: [博士学位论文]. 合肥: 合肥工业大学, 2014.
[4] 凌意瀚. 基于固体氧化物燃料电池应用的基础研究[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2013.
[5] Manchester, S.C., Swan, L.G. and Groulx, D. (2015) Regenerative Air Energy Storage for Remote Wind-Diesel Micro- Grid Communities. Applied Energy, 137, 490-500.
http://dx.doi.org/10.1016/j.apenergy.2014.06.070
[6] Barley, C.D. and Winn, C.B. (1996) Optimal Dispatch Strategy in Remote Hybrid Power Systems. Solar Energy, 58, 165-179.
http://dx.doi.org/10.1016/S0038-092X(96)00087-4
[7] Ebbesen, S.D., Hogh, J., Nielsen, K.A., Nielsen, J.U. and Mogensen, M. (2011) Durable SOC Stacks for Production of Hydrogen and Synthesis Gas by High Temperature Electrolysis. International Journal Hydrogen Energy, 36, 7363- 7373.
http://dx.doi.org/10.1016/j.ijhydene.2011.03.130
[8] Guillot, S. (2012) Corrosion Effects between Molten Salts and Thermal Storage Material for Concentrated Solar Power Plants. Applied Energy, 94,174-181.
http://dx.doi.org/10.1016/j.apenergy.2011.12.057
[9] Nomura, T., Tsubota, M., Oya, T., Okinaka, N. and Akiyama, T. (2013) Heat Storage in Direct-Contact Heat Exchanger with Phase Change Material. Applied Thermal Engineering, 50, 26-34.
http://dx.doi.org/10.1016/j.applthermaleng.2012.04.062
[10] Dong, S.K., Jung, W.N., Rashid, K. and Kashimoto, A. (2016) Design and Numerical Analysis of a Planar Anode- Supported SOFC Stack. Renewable Energy, 94, 637-650.
http://dx.doi.org/10.1016/j.renene.2016.03.098
[11] Park, J., Bae, J. and Kim, J.Y. (2011) The Current Density and Temperature Distributions of Anode-Supported Flat- Tube Solid Oxide Fuel Cells Affected by Various Channel Designs. International Journal of Hydrogen Energy, 36, 9936-9944.
http://dx.doi.org/10.1016/j.ijhydene.2011.04.168
[12] Van Herle, J., Cavieres, R.V., Akyuz, D. and Barthel, K. (2001) Materials and Technologies for SOFC-Components. Journal of the European Cearmic Society, 21, 1851-1854.
http://dx.doi.org/10.1016/S0955-2219(01)00129-7
[13] Gong, W., Cai, Z., Yang, J., Li, X. and Jian, L. (2014) Parameter Identification of an SOFC Model with an Efficient, Adaptive Differential Evolution Algorithm. International Journal of Hydrogen Energy, 39, 5083-5096.
http://dx.doi.org/10.1016/j.ijhydene.2014.01.064
[14] Chen, X.J., Khor, K.A. and Chan, S.H. (2003) Identification of O2 Reduction Processes at Yttria Stabilized Zirconia Doped Lanthanum Manganite Interface. Journal of Power Sources, 123, 17-25.
http://dx.doi.org/10.1016/S0378-7753(03)00436-1
[15] Recknagle, K.P., Williford, R.E., Chick, L.A., Rector, D.R. and Khaleel, M.A. (2003) Three-Dimensional Thermo- Fluid Electrochemical Modeling of Planar SOFC Stacks. Journal of Power Sources, 113, 109-114.
http://dx.doi.org/10.1016/S0378-7753(02)00487-1
[16] Bertei, A. and Nicolella, C. (2015) Common Inconsistencies in Modeling Gas Transport in Porous Electrodes: The Dusty-Gas Model and the Fick Law. Journal of Power Sources, 279, 133-137.
http://dx.doi.org/10.1016/j.jpowsour.2015.01.007
[17] Wen, H., Ordonez, J.C. and Vargas, J.V.C. (2013) Optimization of Single SOFC Structural Design for Maximum Power. Applied Thermal Engineering, 5, 12-25.
http://dx.doi.org/10.1016/j.applthermaleng.2012.05.020
[18] Timurkutluk, B. and Mat, M.D. (2016) A Review on Micro-Level Modeling of Solid Oxide Fuel Cells. International Journal of Hydrogen Energy, 41, 9968-9981.
http://dx.doi.org/10.1016/j.ijhydene.2016.02.089
[19] Ebbesen, S.D. and Mogensen, M. (2009) Electrolysis of Carbon Dioxide in Solid Oxide Electrolysis Cells. Journal of Power Sources, 193, 349-357.
http://dx.doi.org/10.1016/j.jpowsour.2009.02.093
[20] Yu, B., Zhang, W.Q., Chen, J., Xu, J.M. and Wang, S.R. (2008) Advance in Highly Efficient Hydrogen Production by High Temperature Steam Electrolysis. Science in China Series B: Chemistry, 51, 290-293.
http://dx.doi.org/10.1007/s11426-008-0054-z
[21] Kim, S.-D., Seo, D.-W., Dorai, A.K. and Woo, S.-K. (2013) The Effect of Gas Compositions on the Performance and Durability of Solid Oxide Electrolysis Cells. International Journal Hydrogen Energy, 38, 6569-6576.
http://dx.doi.org/10.1016/j.ijhydene.2013.03.115
[22] Mahmoudi, J. and Fredriksson, H. (2000) Fredriksson in Transactions of the Indian Institute of Metals. Journal of Materials Science, 35, 4977-4987.
http://dx.doi.org/10.1023/A:1004846812384
[23] Saunders, N. and Miodownik, A.P. (1990) Simultaneous Calculation of Mechanical Properties and Phase Equilibria. Journal of Phase Equilibria and Diffusion, 11, 278-287.