环氧树脂乳液的成膜特性及对超高性能混凝土的改性作用
The Film-Forming Property and Modification Effect on Ultra-High Performance Concrete of Epoxy Resin Emulsion
DOI: 10.12677/HJCE.2016.56034, PDF, HTML, XML,  被引量 下载: 1,740  浏览: 4,369  国家科技经费支持
作者: 何顺爱*:四川省建筑科学研究院,四川 成都;朱晓燕, 郑 召*, 李玉香:西南科技大学,四川省非金属复合与功能材料重点实验室,四川 绵阳
关键词: 环氧树脂乳液水化速率微观形貌孔结构粘接强度Epoxy Resin Emulsion Hydration Rate Microstructure Pore Structure Adhesive Strength
摘要: 掺加不同聚灰比和不同固脂比(固化剂与环氧树脂乳液的质量比,下同)的聚合物对超高性能混凝土(UHPC)进行改性,测定改性水泥浆体的水化放热速率和放热量,用SEM观察改性UHPC的微观组织结构,并用压汞法(MIP)分析改性的孔结构。结果表明,聚合物在水化的0~6 h会加快水泥浆体的水化放热速率,在水化的加速期6~15 h和15 h以后则起减速作用;当固脂比为0.5时,环氧树脂乳液固化后形成相互交错缠绕的纤维状薄膜;随着聚灰比的增加,改性UHPC的平均孔径增大,孔隙率先减小后增大,抗折强度和压折比不断减小,粘接强度升高,当掺量达到15%时,改性UHPC的粘接强度达到2.75 MPa。
Abstract: The ultra-high performance concrete (UHPC) was modified by adding different latex contents cement ratios and different S/E ratios (the mass ratio of solidification agent and epoxy resin emulsion, the same below) of polymer; the hydration rate of the modified UHPC was researched; the microstructure of the modified UHPC was observed by SEM and the pore structure of the modified UHPC was analyzed through mercury injection method (MIP). The results show that the polymer accelerates the hydration speed of the modified cement paste in 0 - 6 h, and plays a role of inhibition in 6 - 15 h and after 15 h. When the S/E ratio was 0.5, the epoxy resin emulsion exists as overlapping fibers after being solidified. The average pore diameter of modified UHPC increases with the increase of polymer content, while the porosity increases before decreasing; the flexural strength and the ratio of compressive to flexural strength decrease, and adhesive strength increases. When the content of polymer is 15%, the adhesive strength reaches 2.75 MPa.
文章引用:何顺爱, 朱晓燕, 郑召, 李玉香. 环氧树脂乳液的成膜特性及对超高性能混凝土的改性作用[J]. 土木工程, 2016, 5(6): 253-261. http://dx.doi.org/10.12677/HJCE.2016.56034

参考文献

[1] 钟世云. 聚合物在混凝土中的应用[M]. 北京: 化学工业出版社材料科学与工程出版中心, 2003.
[2] Seo, Y. and Noguchi, T. (2012) Water Absorption and Constraint Stress Analysis of Polymer-Modified Cement Mortar Used as a Patch Repair Material. Construction & Building Materials, 28, 819-830.
[3] Fowler, D.W. (1999) Polymers in Concrete: A Vision for the 21st Century. Cement & Concrete Composites, 449-452. https:/doi.org/10.1016/S0958-9465(99)00032-3
[4] 王茹, 王培铭. 苯丙乳液水泥砂浆横向变形与压折比及其关系[J]. 建筑材料学报, 2008, 11(4): 464-468.
[5] 钟世云, 李晋梅, 韩冬冬, 等. 聚合物乳液在水泥颗粒表面吸附的影响因素–乳液类型及聚灰比[J]. 建筑材料学报, 2013, 16(5): 739-743.
[6] Ohama, Y. (1998) Polymer-Based Admixtures. Cement & Concrete Composites, 20, 189-212. https:/doi.org/10.1016/S0958-9465(97)00065-6
[7] Choon, P. and Dongw, C. 硅酸盐水泥基无大孔胶凝材料中金属离子的作用[J]. 硅酸盐学报, 1996(4): 382-388.
[8] Xiao, L.G. (2009) Preparation and Properties of a New Composite of Epoxy Emulsion (EEM) Modified Cement. Jour- nal of Wuhan University of Technology—Materials Science Edition, 24, 843-845. https:/doi.org/10.1007/s11595-009-5843-5
[9] Jenni, A., Holzer, L., Zurbriggen, R., et al. (2005) Influence of Polymers on Microstructure and Adhesive Strength of Cementitious Tile Adhesive Mortars. Cement & Concrete Research, 35, 35-50. https:/doi.org/10.1016/j.cemconres.2004.06.039
[10] 陈友治, 李方贤, 王红喜. 水乳环氧对水泥砂浆强度的影响[J]. 重庆大学学报: 自然科学版, 2003, 26(12): 48-50.
[11] Park, D., Park, S., Seo, Y. and Noguchi, T. (2011) Water Absorption and Constraint Stress Analysis of Polymer-Modified Cement Mortar Used as a Patch Repair Material. Construction & Building Materials, 28, 819-830. https:/doi.org/10.1016/j.conbuildmat.2011.06.081
[12] Aggaewal, L.K., Thapliyal, P.C. and Karade, S.R. (2007) Properties of Polymer-Modified Mortars Using Epoxy and Acrylic Emulsions. Construction & Building Materials, 21, 379-383. https:/doi.org/10.1016/j.conbuildmat.2005.08.007
[13] Sugama, T., Kukacha, L.E. and Horn, W. (1979) Hydrothermal Stability of Vinyl-Type Polymer Concrete Containing Tricalcium Silicate (C3S). Cement & Concrete Research, 9, 461-471. https:/doi.org/10.1016/0008-8846(79)90043-7
[14] Wang, R., Li, X.-G. and Wang, P. (2006) Influence of Polymer on Cement Hydration in SBR-Modified Cement Pastes. Cement & Concrete Research, 36, 1744-1751. https:/doi.org/10.1016/j.cemconres.2006.05.020
[15] Afridi, M.U.K., Ohama, Y., Demura, K. and Iqbal, M.Z. (2003) Development of Polymer Films by the Coalescence of Polymer Particles in Powdered and Aqueous Polymer-Modified Mortars. Cement & Concrete Research, 33, 1715-1721. https:/doi.org/10.1016/S0008-8846(02)01094-3
[16] Knapen, E. and Gemert, D.V. (2009) Effect of under Water Storage on Bridge Formation by Water-Soluble Polymers in Cement Mortars. Construction & Building Materials, 23, 3420-3425. https:/doi.org/10.1016/j.conbuildmat.2009.06.007
[17] 卞新声. 遥爪液体聚合物改性环氧涂料. 涂料工业, 1987(06): 32-35.
[18] Maranhao, F.L. and John, V.M. (2009) Bond Strength and Transversal Deformation Aging on Cement-Polymer Adhesive Mortar. Construction & Building Materials, 23, 1022-1027. https:/doi.org/10.1016/j.conbuildmat.2008.05.019