MP  >> Vol. 6 No. 6 (November 2016)

    普朗克常数与光子静止质量常数统一实验分析
    Unified Experimental Analysis of Planck Constant and Photons Rest Mass Constant

  • 全文下载: PDF(476KB) HTML   XML   PP.183-193   DOI: 10.12677/MP.2016.66018  
  • 下载量: 683  浏览量: 2,567  

作者:  

吴先金:长江大学信息与数学学院,湖北 荆州

关键词:
光子静止质量常数普朗克常数吸收光谱黑体辐射光电效应Photons Rest Mass Constant Planck’s Constant Absorption Spectrum Blackbody Radiation Photoelectric Effect

摘要:

光子有没有静止质量是物理学的一个基本问题。爱因斯坦将普朗克常数h作为光子的能量常数,表明光子没有静止质量。本文对吸收光谱、普朗克黑体辐射公式和爱因斯坦光电效应理论与实验进行分析研究,结果表明普朗克常数h不是光子的能量常数,而是原子核外轨道电子或金属导带自由电子的能量常数,并提出了光子静止质量常数hm假设。以光子静止质量常数和普朗克常数同时解释吸收光谱、黑体辐射和光电效应以及其他相关物理实验更具有合理性。本文对普朗克常数h与光子静止质量常数hm的论证,为物理学相关理论与实验的发展提出了新的思路。

Whether the rest mass of photon is zero is one of the fundamental problems in physics. Einstein used Planck’s constant h as a constant of the photon energy, indicating that the photon is no rest mass. In this paper, the analysis and research results of the absorption spectroscopy, Planck’s blackbody radiation equation, Einstein’s photoelectric effect theory and experiment show that Planck’s constant h is not the energy constant of the photon but rather the energy constant of the nucleus outside orbit electrons or metal conduction band free electrons. A constant hm of photons rest mass is assumed. It is more reasonable that the photon rest mass constant and Planck’s constant are used to explain the absorption spectra, blackbody radiation and the photoelectric effect, and other related physical experiment. The argument about Planck’s constant h and constant hm of photons rest mass put forward new ideas for the development of relevant theoretical and experimental physics.

文章引用:
吴先金. 普朗克常数与光子静止质量常数统一实验分析[J]. 现代物理, 2016, 6(6): 183-193. http://dx.doi.org/10.12677/MP.2016.66018

参考文献

[1] Proca, A. (2003) Extra Space-Time Dimensions. Nature, 421, 922-924 Proca A, Compt. Rend., 1930, 190: 1377-1379 [in France]. ibid. 1930, 191: 26-29; ibid. 1931, 193: 832-834; ibid. 1936, 202:1490-1492; ibid. 1936, 203: 709-711 [in France].
[2] de Broglie, L. (1940) La Méchanique du Photon, Une Nouëelle Théorie de la Lumière, Vol. 1, 9-40, Hermanm, Paris.
[3] Schrödinger, E. (1943) The Earth’s and the Sun’s Permanent Magnetic Fields in the Unitary Field Theory. Proceedings of the Royal Irish Academy, 49, 135-148.
[4] Tu, L.C., Shao, C.G., Luo, J. and Luo, J. (2006) Test of U(1) Local Gauge Invariance in Proca Electrodynamics. Physics Letters A, 352, 267-271. http://dx.doi.org/10.1016/j.physleta.2005.12.017
[5] Goldhaber, A.S. and Nieto, M.M. (2010) Photon and Graviton Mass Limits. Reviews of Modern Physics, 82, 939. http://dx.doi.org/10.1103/RevModPhys.82.939
[6] Olive, K.A., et al. (2014) Particle Data Group. Chinese Physics C, 38, Article ID: 090001. http://dx.doi.org/10.1088/1674-1137/38/9/090001
[7] Einstein (1905) On a Heuristic Point of View Concerning the Production and Transformation of Light. Annalen der Physik, 17, 132-148.
[8] Thomson, J.J. (1897) Cathode Rays. Philosophical Magazine, 44, 293. http://dx.doi.org/10.1080/14786449708621070
[9] Compton, A. (1923) A Quantum Theory of the Scattering of X-Rays by Light Elements. Physical Review, 21, 483-502. http://dx.doi.org/10.1103/PhysRev.21.483
[10] Mohr, P.J., Taylor, B.N. and Newell, D.B. (2012) CODATA Recommended Values of the Fundamental Physical Constants: 2010. Reviews of Modern Physics, 84, 1-3. http://dx.doi.org/10.1103/RevModPhys.84.1527
[11] Einstein, A. (1905) Zur Elektrodynamik bewegter Körper. Annalen der Physik, 322, 891-921. http://dx.doi.org/10.1002/andp.19053221004
[12] Wollaston, W.H. (1802) A Method of Examining Refractive and Dispersive Powers, by Prismatic Reflection. Philosophical Transactions of the Royal Society, 92, 365-380. http://dx.doi.org/10.1098/rstl.1802.0014
[13] Fraunhofer, J. (1814-1815) Bestimmung des Brechungs- und des Farben-Zerstreuungs—Vermögens verschiedener Glasarten, in Bezug auf die Vervollkommnung achromatischer Fernröhre. Denkschriften der Königlichen Akademie der Wissenschaften zu München, 5, 193-226.
[14] Kirchhoff, G. (1859) Ueber die Fraunhofer’schen Linien. Monatsbericht der Königlichen Preussische Akademie der Wissenschaften zu Berlin, 662-665.
[15] Kirchhoff, G. (1859) Ueber das Sonnenspektrum. Verhandlungen des naturhistorisch-medizinischen Vereins zu Heidelberg, 1, 251-255.
[16] Kirchhoff, G. (1860) Ueber die Fraunhofer’schen Linien. Annalen der Physik, 185, 148-150. http://dx.doi.org/10.1002/andp.18601850115
[17] Kirchhoff, G. (1860) Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht. Annalen der Physik, 185, 275-301. http://dx.doi.org/10.1002/andp.18601850205
[18] Walsh, A. (1955) The Application of Atomic Absorption Spectra to Chemical Analysis. Spectrochimica Acta, 7, 108- 117. http://dx.doi.org/10.1016/0371-1951(55)80013-6
[19] Alkemade, C.T.J. and Milatz, J.M.W. (1955) A Double-Beam Method of Spectral Selection with Flames. Applied Scientific Research, Section B, 4, 289-299. http://dx.doi.org/10.1007/BF02920009
[20] Kirkbright, G.F. and Sargent, M. (1974) Atomic Absorption and Fluorescence Spectroscopy. Academic Press, London, 17-63.
[21] L’vov, B.V. (1970) Atomic Absorption Spectrochemical Analysis. American Elsevier Publishing Company Inc., New York, 5-35.
[22] Planck, M. (1901) On the Law of Distribution of Energy in the Normal Spectrum. Annalen der Physik, 4, 553.
[23] Einstein (1906) On the Theory of Light Production and Light Absorption. Annalen der Physik, 20, 199-206.
[24] Millikan, R.A. (1916) A Direct Photoelectric Determination of Planck’s “h”. Physical Review, 7, 355-388. http://dx.doi.org/10.1103/PhysRev.7.355