Ti1-2xAlxNbxO2陶瓷介电性质的研究
Study of the Dielectric Properties of Ti1-2xAlxNbxO2 Ceramics
DOI: 10.12677/APP.2016.611030, PDF, HTML, XML, 下载: 1,811  浏览: 2,828  国家自然科学基金支持
作者: 吴星波*, 刘 凯, 孙亚龙, 谢 娟, 古寿林:苏州大学物理与光电•能源学部,江苏 苏州
关键词: 掺杂TiO2陶瓷薄膜介电性质Doped TiO2 Ceramic Thin Film Dielectric Properties
摘要: 本文通过传统的固相烧结法制备了一系列(Al+NB)共掺杂锐钛矿TiO2陶瓷,浓度分别为0.5%, 1%, 2% 和5%,摸索出了拥有优异介电性能的掺杂TiO2陶瓷最佳制备条件:掺杂量x = 0.02时,在1500℃温度下空气气氛中烧结10 h。通过对样品的微观结构、元素以及价态分析、介电温度谱等方面的研究,实验发现Ti1-2xAlxNbxO2陶瓷由锐钛矿型结构转变为金红石相结构;具有很高的致密性;陶瓷的介电性能有很好的频率稳定性以及温度稳定性;表面势垒层电容效应与晶界效应引起的界面极化效应均不是引起巨介电的主要原因,优异介电性能的主要因素来自于电子钉扎缺陷偶极子效应。
Abstract: In this work, the (Al + Nb) co-doped anatase TiO2 ceramics were prepared by conventional solid phase sintering, and the concentrations were 0.5%, 1%, 2% and 5%, respectively. The optimized annealing conditions for (Al + Nb) co-doped TiO2 ceramics were 1500˚C for 10 h under air atmosphere and the concentration was 2%. According to the sample’s analysis of the microstructure, element, valence, different temperature of dielectric properties, we find that the structure of ceramics transforms from anatase phase structure into rutile phase structure, and all the ceramics have very high density. Their dielectric properties have a very good frequency and temperature stability. The primary origin of the observed colossal dielectric permittivities apparent in our ceramics is not fundamentally related to surface barrier layer capacitor (SBLC) effect and grain boundary effect. Electron-pinned defect-dipoles effect is responsible for the excellent CP properties observed in (Al + Nb) co-doped TiO2.
文章引用:吴星波, 刘凯, 孙亚龙, 谢娟, 古寿林. Ti1-2xAlxNbxO2陶瓷介电性质的研究[J]. 应用物理, 2016, 6(11): 239-249. http://dx.doi.org/10.12677/APP.2016.611030

参考文献

[1] Krohns, S., et al. (2011) The Route to Resource-Efficient Novel Materials. Nature Materials, 10, 899-901. http://www.nature.com/nmat/journal/v10/n12/abs/nmat3180.html https://doi.org/10.1038/nmat3180
[2] Homes, C.C. and Vogt, T. (2013) Colossal Permittivity Materials: Doping for Superior Dielectrics. Nature Materials, 12, 782-783. http://infrared.phy.bnl.gov/pdf/homes/2013/nmat3744.pdf https://doi.org/10.1038/nmat3744
[3] Choi, B.S., Lin, S.T., Duh, J.G. and Chang, R.P.H. (1989) Equivalent Circuit Model in Grain-Boundary Barrier Layer Capacitors. Journal of the American Ceramic Society, 72, 1967-1975. http://onlinelibrary.wiley.com/doi/10.1111/j.1151-2916.1989.tb06008.x/abstract https://doi.org/10.1111/j.1151-2916.1989.tb06008.x
[4] Heywang, W. (1971) Semiconducting Barium Titanate. Journal of Materials Science, 6, 1214-1224. http://link.springer.com/article/10.1007/BF00550094 https://doi.org/10.1007/BF00550094
[5] Fujimoto, M. and Kingery, W.D. (1987) Potassium Grain Boundary Segregation and Site Occupancy in SrTiO3 Ceramics. Japanese Journal of Applied Physics, 68, 169. http://iopscience.iop.org/article/10.1143/JJAP.26.L2065
[6] Li, J., Subramanian, M.A., Rosenfeld, H.D., Jones, C.Y., Toby, B.H. and Sleight, A.W. (2004) Clues to the Giant Dielectric Constant of CaCu3Ti4O12 in the Defect Structure of “SrCu3Ti4O12”. Chemistry of Materials, 16, 5223-5225. http://pubs.acs.org/doi/abs/10.1021/cm048345u https://doi.org/10.1021/cm048345u
[7] Ramirez, A.P., Subramanian, M.A., Gardel, M., Blumberg, G., Li, D., Vogt, T. and Shapiro, S.M. (2000) Giant Dielectric Constant Response in a Copper-Titanate. Solid State Communications, 115, 217-220. https://www.researchgate.net/publication/223480623_Giant_Dielectric_Constant_Response_a_Copper-Titanate https://doi.org/10.1016/S0038-1098(00)00182-4
[8] Homes, C.C., Vogt, T., Shapiro, S.M., Wakimoto, S. and Ramirez, A.P. (2001) Optical Response of High-Dielectric- Constant Perovskite Related Oxide. Science, 293, 673-676. http://science.sciencemag.org/content/293/5530/673 https://doi.org/10.1126/science.1061655
[9] Wu, J., Nan, C.W., Lin, Y. and Deng, Y. (2002) Giant Dielectric Permittivity Observed in Li and Ti Doped NiO. Physical Review Letters, 89, 217601. http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.89.217601 https://doi.org/10.1103/physrevlett.89.217601
[10] Hu, W.B., Liu, Y., Withers, R.L., Frankcombe, T.J., Noren, L., SnashAll, A., Kitchin, M., Smith, P., Gong, B., Chen, H., Schiemer, J., Brink, F. and Wong-Leung, J. (2013) Electron-Pinned Defect-Dipoles for High-Performance Colossal Permittivity Materials. Nature Materials, 12, 821-826. http://www.nature.com/nmat/journal/v12/n9/abs/nmat3691.html
[11] Li, J.L., Li, C., Yang, G., Xu, Z. and Zhang, S.J. (2015) Evidences of Grain Boundary Capacitance Effect on the Colossal Dielectric Permittivity in (Nb + In) Co-Doped TiO2 Ceramics. Scientific Reports, 5, Article No. 8295. http://www.nature.com/articles/srep08295 https://doi.org/10.1038/srep08295
[12] 山东大学物理系, 主编. 压电陶瓷生产工艺. 济南: 山东大学出版社, 1974.
[13] Swamy, V., Muddle, B.C. and Dai, Q. (2006) Size-Dependent Modifications of the Raman Spectrum of Rutile TiO2. Applied Physics Letters, 89, Article ID: 163118. http://scitation.aip.org/content/aip/journal/apl/89/16/10.1063/1.2364123
[14] Gajović, A., Stubičar, M., Ivanda, M. and Furić, K. (2001) Raman Spectroscopy of Ball-Milled TiO2. Journal of Molecular Structure, 563-564, 315-320. http://www.sciencedirect.com/science/article/pii/S0022286000007900 https://doi.org/10.1016/S0022-2860(00)00790-0
[15] Porto, S.P.S., Fleury, P.A. and Damen, T.C. (1967) Raman Spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2. Physical Review, 154, 522-526. http://journals.aps.org/pr/abstract/10.1103/PhysRev.154.522 https://doi.org/10.1103/PhysRev.154.522
[16] Li, J.L., Li, F., Zhuang, Y.Y., Jin, L., Wang, L.H., Wei, X.Y., Xu, Z. and Zhang, S.J. (2014) Microstructure and Dielectric Properties of (Nb +  In) Co-Doped Rutile TiO2 Ceramics. Journal of Applied Physics, 116, Article ID: 074105. http://scitation.aip.org/content/aip/journal/jap/116/7/10.1063/1.4893316 https://doi.org/10.1063/1.4893316
[17] Dacca, A., Gemme, G., Mattera, L. and Parodi, R. (1998) XPS Analysis of the Surface Composition of Niobium for Superconducting RF Cavities. Applied Surface Science, 126, 219-230. http://www.sciencedirect.com/science/article/pii/S0169433297007903 https://doi.org/10.1016/S0169-4332(97)00790-3
[18] Morris, D., Dou, Y., Rebane, J., Mitchell, C.E.J., Egdell, R.G., Law, D.S.L., Vittadini, A. and Casarin, M. (2000) Photoemission and STM Study of the Electronic Structure of Nb-Doped TiO2. Physical Review B, 61, Article ID: 13445. http://journals.aps.org/prb/abstract/10.1103/PhysRevB.61.13445 https://doi.org/10.1103/PhysRevB.61.13445
[19] Erdem, B, Hunsicker, R.A., Simmons, G.W., Sudol, E.D., Dimonie, V.L. and El-Aasser, M.S. (2001) XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation. Langmuir, 17, 2664-2669. http://pubs.acs.org/doi/abs/10.1021/la0015213
[20] Harvey, S.P., Mason, T.O., Gassenbauer, Y., Schafranek, R. and Klein, A. (2006) Surface versus Bulk Electronic/Defect Structures of Transparent Conducting Oxides: I. Indium Oxide and ITO. Journal of Physics D: Applied Physics, 39, 3959-3968. https://www.scholars.northwestern.edu/en/publications/surface-versus-bulk-electronicdefect-structures-of-transparent-co https://doi.org/10.1088/0022-3727/39/18/006
[21] Hu, W.B., Lau, K., Liu, Y., Withers, R.L., et al. (2015) Colossal Dielectric Permittivity in (Nb + Al) Codoped Rutile TiO2 Ceramics: Compositional Gradient and Local Structure. Chemistry of Materials, 27, 4934-4942. http://pubs.acs.org/doi/abs/10.1021/acs.chemmater.5b01351
[22] Zhu, Y., Zheng, J.C., Wu, L., et al. (2007) Nanoscale Disorder in CaCu3Ti4O12: A New Route to the Enhanced Dielectric Response. Physical Review Letters, 99, Article ID: 037602. http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.99.037602 https://doi.org/10.1103/PhysRevLett.99.037602
[23] Ferrarelli, M.C., Sinclair, D.C., West, A.R., et al. (2009) Comment on the Origin(s) of the Giant Permittivity Effect in CaCu3Ti4O12 Single Crystals and Ceramics. Journal of Materials Chemistry, 19, 5916-5919. http://pubs.rsc.org/en/content/articlelanding/2009/jm/b910871h#!divAbstract https://doi.org/10.1039/b910871h
[24] Deshpande, S.K., Achary, S.N., Mani, R., Gopalakrishnan, J. and Tyagi, A.K. (2011) Low-Temperature Polaronic Relaxations with Variable Range Hopping Conductivity in FeTiMO6 (M = Ta, Nb, Sb). Physical Review B, 84, Article ID: 064301. http://journals.aps.org/prb/abstract/10.1103/PhysRevB.84.064301