PM  >> Vol. 6 No. 6 (November 2016)

    Clifford代数Cln+1,0(C) 中的k-Hypergenic向量值函数的性质
    some Properties of k-Hypergenic Functions with Vector Value in the Clifford Algebra Cln+1,0(C)

  • 全文下载: PDF(331KB) HTML   XML   PP.464-470   DOI: 10.12677/PM.2016.66063  
  • 下载量: 959  浏览量: 3,517   国家自然科学基金支持

作者:  

边小丽,王亚萍,李 霞:天津职业技术师范大学,天津

关键词:
Clifford分析k-Hypergenic向量值函数k-Hypergenic调和向量值函数Clifford Analysis k-Hypergenic Functions with Vector Value k-Hypergenic Harmonic Functions with Vector Value

摘要:

在实Clifford分析中的k-超正则向量值函数和k-超调和向量值函数定义的基础上,首先给出了复Clifford代数Cln+1,0(C) 中的k-Hypergenic向量值函数和k-Hypergenic调和向量值函数的定义,然后引入了一个偏微分方程组,借助这个偏微分方程组讨论了k-Hypergenic向量值函数的性质及其与k-Hypergenic调和向量值函数的关系,最后得到这个偏微分方程组可解性的充分必要条件。

In this paper, on the basis of the definition of the k-Hypermonogenic and k-Hyperbolically har-monic functions with vector value in real Clifford analysis, the definition of the k-Hypergenic functions and k-Hypergenic harmonic functions with vector value in the Clifford algebra Cln+1,0(C) is given. Then, some properties of k-Hypergenic functions with vector value and their relation with k-Hypergenic harmonic functions with vector value are discussed by introducing a partial differential equation system. Furthermore, a necessary and sufficient condition for the solvability of the partial differential equation system is obtained.

文章引用:
边小丽, 王亚萍, 李霞. Clifford代数Cln+1,0(C) 中的k-Hypergenic向量值函数的性质[J]. 理论数学, 2016, 6(6): 464-470. http://dx.doi.org/10.12677/PM.2016.66063

参考文献

[1] Hestenes, D. and Sobczyk, G. (1984) Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. Reidel Publishing Company, Dordrecht.
[2] Brackx, F., Delanghe, R. and Sommen, F. (1982) Clifford Analysis. Pitman BooksLimits, Boston.
[3] Eriksson-Bique, S.L. (2003) K-Hypermonogenic Functions. In: Gürlebeck, K., Ed., Progress in Analysis I, World Scientific Publishing, Singapore, 337-348.
[4] 张艳慧, 乔玉英. 复Clifford分析中的超正则函数及其性质 [J]. 河北师范大学学报(自然科学版), 2001, 25(4): 427-431.
[5] 袁洪芬, 乔玉英. k-超正则函数及其相关函数的性质[J]. 数学物理学报A辑, 2009, 29(3): 716-726.
[6] 彭维玲, 王海燕. Clifford分析中k-超正则向量值函数的性质[J]. 通化师范学院学报, 2008, 29(2): 13-15.
[7] Eriksson, S.L. and Orelma, H. (2009) Hyperbolic Function Theory in the Clifford Algebra . Advance in Applied Clifford Algebra, 19, 283-301. https://doi.org/10.1007/s00006-009-0157-4
[8] 谢永红, 杨贺菊. 复Clifford分析中的复k-Hypergenic函数[J]. 数学年刊A辑, 2013, 34(2): 211-222.
[9] 谢永红. Clifford分析中对偶的k-Hypergenic函数[J]. 数学年刊A辑, 2014, 35(2): 235-246.
[10] 谢永红, 张晓飞, 王丽丽. Clifford Mobius变换与Hypergenic函数[J]. 数学年刊A辑, 2015, 36(1): 69-80.
[11] 边小丽, 刘华, 袁程. 复Clifford分析中的复k-超单演函数[J]. 数学的实践与认识, 2014, 44(24): 294-299.
[12] 边小丽, 王海燕, 刘华. 复k-超正则向量值函数的性质[J]. 数学的实践与认识, 2016, 46(3): 273-278.