AAM  >> Vol. 5 No. 4 (November 2016)

    Helmholtz方程透射特征值问题的数值算法
    Numerical Solution of Transmission Eigenvalue Problems of Helmholtz Equation

  • 全文下载: PDF(400KB) HTML   XML   PP.683-694   DOI: 10.12677/AAM.2016.54080  
  • 下载量: 1,023  浏览量: 3,089   国家自然科学基金支持

作者:  

周欣,李铁香:东南大学数学系,江苏 南京

关键词:
透射特征值广义特征值问题二次特征值问题线性化位移求逆Transmission Eigenvalue Generalized Eigenvalue Problem Quadratic Eigenvalue Problem Linearization Shift-and-Invert

摘要:

本文中我们对Helmholtz方程透射特征值问题提出一种带位移求逆的算法,此算法可以快速有效地求出任意给定的 σ 附近的几个实特征值及对应的特征向量。首先,我们用连续有限元方法对Helmholtz方程透射特征值问题进行离散,并将离散后的广义特征值问题化为一个二次特征值问题,进而对其进行线性化得到一个新的广义特征值问题。这个新的广义特征值问题排除了没有物理意义的零特征值的干扰,保留了所有的非零特征值。我们还利用位移求逆的技术,求得给定的 σ 附近的几个实特征对。我们所提出的算法对透射特征值问题的折射率没有特别的限制,即折射率可为正或负亦或是任意的实函数。最后的数值算例验证了该算法的有效性。

In this paper, we put forward a shift-and-invert algorithm to solve the transmission eigenvalue problem of Helmholtz equation, which can quickly and efficiently find out the several eigenvalues and the corresponding eigenvectors near arbitrarily given σ. First, we use the continuous finite element method to discrete the transmission eigenvalue problem of Helmholtz equation, and dis-crete the generalized eigenvalue problem into a quadratic eigenvalue problem, and then a new generalized eigenvalue problem is obtained by linearization. The new generalized eigenvalue problem eliminates the distraction of nonphysical zero eigenvalues, and preserves all the nonzero eigenvalues. Further through the use of shift-and-invert technology, we can quickly and efficiently get several real eigenpairs near given σ. The proposed algorithm has no special restrictions to the refractive index of the transmission eigenvalue problems, that is to say, the refractive index can be positive or negative or positive and negative real numbers. The final numerical example verifies the effectiveness of our algorithm.

文章引用:
周欣, 李铁香. Helmholtz方程透射特征值问题的数值算法[J]. 应用数学进展, 2016, 5(4): 683-694. http://dx.doi.org/10.12677/AAM.2016.54080

参考文献

[1] Colton, D. and Monk, P. (1988) The Inverse Scattering Problem for Time Hormonic Acoustic Waves in an Inhomogeneous Meium. The Quarterly Journal of Mechanics and Applied Mathematics, 41, 97-125.
https://doi.org/10.1093/qjmam/41.1.97
[2] Cakoni, F., Gintides, D. and Monk, P. (2007) On the Use of Transmission Eigenvalues to Estimate the Index of Refraction from Far Field Data. Inverse Problems, 23, 507-522.
https://doi.org/10.1088/0266-5611/23/2/004
[3] Cakoni, F. and Gintides, D. (2006) Qualitative Methods in Inverse Scattering Theory: An Introduction, Interaction of Mechanics and Mathematics. Springer. Berlin.
[4] Päivärinta, L. and Sylvester, L. (2008) Transmission Eigenvalues. SIAM Journal on Mathematical Analysis, 40, 738-753.
https://doi.org/10.1137/070697525
[5] Cakoni, F. and Gintides, D. (2010) New Results on Transmission Eigenvalues. Inverse Problem and Imaging, 4, 39-48.
https://doi.org/10.3934/ipi.2010.4.39
[6] Cakoni, F., Gintides, D. and Haddar, H. (2010) The Existence of an Infinite Discrete Set of Transmission Eigenvalues. SIAM Journal on Mathematical Analysis, 42, 237-255.
https://doi.org/10.1137/090769338
[7] Cakoni, F., Gintides, D. and Haddar, H. (2010) On the Determination of Dirichlet or Transmission Eigenvalued from Far Field Data. Comptes Rendus Mathematique, 348, 379-383.
https://doi.org/10.1016/j.crma.2010.02.003
[8] Colton, D., Monk, P. and Sun, J. (2010) Analytical and Computational Methods for Transmission Eigenvalues. Inverse Problems, 26, 045011.
https://doi.org/10.1088/0266-5611/26/4/045011
[9] Ji, X., Sun, J. and Xie, H. (2014) A Multigrid Method for Helmholtz Transmission Eigenvalues Problems. Journal of Scientific Computing, 60, 276-294.
https://doi.org/10.1007/s10915-013-9794-9
[10] Ji, X., Sun, J. and Turner, T. (2012) A Mixed Finite Element Method for Helmholtz Transmission Eigenvalues. ACM Transactions on Mathematical Software, 38, Article No. 29.
[11] Huang, T.-M., Huang, W.-Q. and Lin, W.-W. (2015) A Robust Numerical Algorithm for Computing Maxwell’s Transmission Eigenvalue Problems. SIAM Journal on Scientific Computing, 37, A2403-A2423.
https://doi.org/10.1137/15M1018927
[12] Li, T., Huang, W.-Q., Lin, W.-W. and Liu, J. (2015) On Spectral Analysis and a Novel Algorithm for Transmission Eigenvalue Problems. Journal of Scientific Computing, 64, 83-108.
https://doi.org/10.1007/s10915-014-9923-0
[13] Moler, C.B. and Stewart, G.W. (1973) An Algorithm for Generalized Matrix Eigenvalue Problems. SIAM Journal on Numerical Analysis, 10, 241-256.
https://doi.org/10.1137/0710024
[14] Parlett, B.N. (1998) The Symmetric Eigenvalue Problem. SIAM, Philadelphia.
https://doi.org/10.1137/1.9781611971163
[15] Guo, J.S., Lin, W.W. and Wang, C.S. (1995) Numerical Solutions for Large Sparse Quadratic Eigenvalue Problems. Linear Algebra and its Applications, 225, 57-89.
https://doi.org/10.1016/0024-3795(93)00318-T
[16] Tisseur, F. and Meerbergen, K. (2001) The Quadratic Eigenvalue Problem. SIAM Review, 43, 235-286.
https://doi.org/10.1137/S0036144500381988
[17] Golub, G.H. and Van Loan, C.F. (2012) Matrix Computations. 4th Edition, The Johns Hopkins University Press, Baltimore.
[18] Persson, P.O. and Strang, G. (2004) A Simple Mesh Generator in Matlab. SIAM Review, 46, 329-345.
https://doi.org/10.1137/S0036144503429121