团聚效应碳纳米管复合材料特性分析
Property Analysis of Carbon Nanotube Composites with Agglomerations
DOI: 10.12677/MS.2016.66051, PDF, HTML, XML, 下载: 2,258  浏览: 5,769 
作者: 卞立春, 薛正敏, 潘 静, 刘 伟, 孟淑睿:燕山大学,工程力学系,河北 秦皇岛
关键词: 碳纳米管复合材料有效模量团聚效应Mori-Tanaka方法Carbon Nanotube Composite Effective Modulus Agglomeration Mori-Tanka Method
摘要: 碳纳米管具有优异的力学和物理性能,使得碳纳米管成为理想的复合材料增强相。碳纳米管增强复合材料可以在高端电子领域和自动化系统等领域发挥重要作用,但是如果无法解决碳纳米在基体中易团聚的趋势,碳纳米管的广泛应用将面临严峻的挑战。本文在Mori-Tanaka方法的基础上定量分析了碳纳米管的弯曲效应和团聚效应对碳纳米管的影响。
Abstract: The carbon nanotubes could be the idealized composite reinforcements due to their better me-chanics and physical properties. Carbon nanotube reinforced composites can be applied in the high technology fields of electronics and automation systems. But, if the agglomeration of carbon nanotubes induced easily in a matrix cannot be solved, a wide application for carbon nanotubes is impossible. In this paper, based on Mori-Tanaka method, the effects of the waviness and agglom-eration on carbon nanotubes are analyzed quantitatively.
文章引用:卞立春, 薛正敏, 潘静, 刘伟, 孟淑睿. 团聚效应碳纳米管复合材料特性分析[J]. 材料科学, 2016, 6(6): 398-406. http://dx.doi.org/10.12677/MS.2016.66051

参考文献

[1] Thostenson, E.T, Li, C. and Chou, T.W. (2005) Nanocomposites in Context. Composites Science and Technology, 65, 491-516. https://doi.org/10.1016/j.compscitech.2004.11.003
[2] Qian, D, Wagner, G.J., Liu, W.K., Yu, M.F. and Ruoff, RS. (2002) Mechanics of Carbon Nanotubes. Applied Mechanics Reviews, 55, 495-533. https://doi.org/10.1115/1.1490129
[3] Srivastava, D., Wei, C. and Cho, K. (2003) Nanomechanics of Carbon Nanotubes and Composites. Applied Mechanics Reviews, 56, 215-230. https://doi.org/10.1115/1.1538625
[4] Luo, D, Wang, W.X. and Takao, Y. (2007) Effects of the Distribution and Geometry of Carbon Nanotubes on the Macroscopic Stiffness and Microscopic Stresses of Nanocomposites. Composites Science and Technology, 67, 2947-2958. https://doi.org/10.1016/j.compscitech.2007.05.005
[5] Feng, Q.P., Xie, X.M., Liu, Y.T., Gao, Y.F., Wang, X.H. and Ye, X.Y. (2007) Length Sorting of Multi-Walled Carbon Nanotubes by High-Speed Centrifugation. Carbon, 45, 2311-2313.
[6] Shady, E. and Gowayed, Y. (2010) Effect of Nanotube Geometry on the Elastic Properties of Nanocomposites. Com-posites Science and Technology, 70, 1476-1481. https://doi.org/10.1016/j.compscitech.2010.04.027
[7] Liu, Y.J. and Chen, X.L. (2003) Evaluation of the Effective Mechanical Properties of Single Walled Carbon Nano- tubes Using a Spring Based Finite Element Approach. Mechanics of Materials, 35, 69-81. https://doi.org/10.1016/S0167-6636(02)00200-4
[8] Shi, D.L., Feng, X.Q., Huang, Y.G.Y., Hwang, K.C. and Gao, H.J. (2004) The Effect of Nanotube Waviness and Agglomeration on the Elastic Property of Carbon Nanotube-Reinforced Composites. Journal of Engineering Materials and Technology, 126, 250-257. https://doi.org/10.1115/1.1751182
[9] Fisher, F. (2002) Nanomechanics and the Viscoelastic Behavior of Carbon Nanotube-Reinforced Polymers. Northwestern University, Evanston.
[10] Fisher, F.T., Bradshaw, R.D. and Brinson, L.C. (2003) Fiber Waviness in Nanotube-Reinforced Polymer Composites: I. Modulus Predictions Using Effective Nanotube Properties. Composites Science and Technology, 63, 1689-1703. https://doi.org/10.1016/S0266-3538(03)00069-1
[11] Bradshaw, R.D., Fisher, F.T. and Brinson, L.C. (2003) Fiber Waviness in Nanotube-Reinforced Polymer Composites: II. Modeling via Numerical Approximation of the Dilute Strain Concentration Tensor. Composites Science and Technology, 63, 1705-1722. https://doi.org/10.1016/S0266-3538(03)00070-8
[12] Shokrieh, M.M. and Rafiee, R. (2010) Investigation of Nanotube Length Effect on the Reinforcement Efficiency in Carbon Nanotube Based Composites. Composite Structures, 92, 2415-2420. https://doi.org/10.1016/j.compstruct.2010.02.018
[13] Bogetti, T.A., John, G.J.W. and Lamontia, M.A. (1992) Influence of Ply Waviness on the Stiffness and Strength Reduction on Composite Laminates. Journal of Thermoplastic Composite Materials, 5, 344-369. https://doi.org/10.1177/089270579200500405
[14] Hsiao, H.M. and Daniel, I.M. (1996) Elastic Properties of Composites with Fiber Waviness. Composites Part A: Applied Science and Manufacturing, 27, 931-941. https://doi.org/10.1016/1359-835X(96)00034-6
[15] Telegadas, H.K. and Hyer, M.W. (1992) The Influence of Layer Waviness on the Stress State in Hydrostatically Loaded Cylinders: Failure Prediction. Journal of Reinforced Plastics and Composites, 11, 127-145. https://doi.org/10.1177/073168449201100202
[16] Chun, H.J., Shin, J.Y. and Daniel IM. (2001) Effect of Material Geometric Non-linearities on the Tensile and Compressive Behavior of Composite Materials with Fiber Waviness. Composites Science and Technology, 61, 125-134. https://doi.org/10.1016/S0266-3538(00)00201-3
[17] Jortner, J. (1984) A Model for Predicting Thermal and Elastic Constants of Wrinkled Regions in Composite Materials. American Society for Testing and Materials, 217-236. https://doi.org/10.1520/stp30206s
[18] Chou, T.W. and Takahashi, K. (1987) Non-Linear Elastic Behavior of Flexible Fiber Com-posites. Composites, 18, 25- 34. https://doi.org/10.1016/0010-4361(87)90004-8
[19] 董淑宏, 周剑秋. 团聚碳纳米管增强金属基复合材料的力学行为[J]. 南京工业大学学报, 自然, 2015, 37(6): 6-12.
[20] 王垚, 吴珺, 魏飞, 骞伟中, 余皓. 碳纳米管团聚结构的电镜研究 电子显微学报2002, 21(4): 422-428.
[21] Yang, K., Yi, Z.L., Jing, Q.F. and Lin, D.H. (2014) Dispersion and Aggregation of Single-Walled Carbon Nanotubes in Aqueous Solutions of Anionic Surfactants. Journal of Zhejiang Universi-ty-SCIENCE A (Applied Physics & Engineering), 15, 624-633. https://doi.org/10.1631/jzus.A1400113
[22] Barai, P. and Weng, G.J. (2011) A Theory of Plasticity for Carbon Nanotube Reinforced Composites. International Journal of Plasticity, 27, 539-559. https://doi.org/10.1016/j.ijplas.2010.08.006
[23] Pan, J., Bian, L.C., Zhao, H.C. and Zhao, Y. (2016) A New Micromechanics Model and Effective Elastic Modulus of Nanotube Reinforced Composites. Computational Materials Science, 113, 21-26. https://doi.org/10.1016/j.commatsci.2015.11.009
[24] Wang, Y., Shan J.W. and Weng, G.J. (2015) Percolation Threshold and Elec-trical Conductivity of Graphene-Based Nanocomposites with Filler Agglomeration and Interfacial Tunneling. Journal of Applied Physics, 118, 065101. https://doi.org/10.1063/1.4928293