AP  >> Vol. 6 No. 12 (December 2016)

    情绪性信息诱发的脑偏侧化认知神经机制研究进展
    Studies on Cognitive Neuropsychological Mechanisms of Hemisphere Lateralization Evoked by Emotional Information

  • 全文下载: PDF(573KB) HTML   XML   PP.1231-1239   DOI: 10.12677/AP.2016.612155  
  • 下载量: 831  浏览量: 1,246  

作者:  

何良玉:广东医学院研究生学院,广东 湛江;
陈湛愔:湛江中心人民医院,广东 湛江

关键词:
情绪维度效价唤醒度偏侧化自动与控制加工Emotional Dimension Valence Arousal Laterality Automatic and Controlled Processing

摘要:

研究表明大脑情绪信息加工存在偏侧化的神经机制,关于情绪性信息诱发认知加工的偏侧化神经机制目前主要有以下两种理论:右半球偏侧化理论和情绪维度理论。但这两种理论都不能完整解释大脑情绪性信息加工机制。最近有研究者提出情绪信息加工是一个自动和控制双重加工过程。本文将结合认知神经科学研究证据,讨论情绪认知的神经机制和加工模式的最新进展。

Reviewing literatures on processing of emotional information, numerous investigators have shown a lateralized effect evoked by emotional information in the cerebral hemispheres. Researchers describe two possible aspects of hemisphere lateralization: right hemisphere and emotional dimension hypotheses. Findings on emotion processing are mostly inconsistent with both hypotheses. Thus, some researchers suggest a dual-process model, which consists of automatic and controlled processing. This article presents an overview on recent studies of lateral asymmetries related to emotion, and clarifies the role of the hemispheres in this dichotomy.

文章引用:
何良玉, 陈湛愔 (2016). 情绪性信息诱发的脑偏侧化认知神经机制研究进展. 心理学进展, 6(12), 1231-1239. http://dx.doi.org/10.12677/AP.2016.612155

参考文献

[1] 陈湛愔, 高俊杰, 张光妍, 何国林, 周曙, 许雯蔚, 何良玉, 林海峰, 梁余航, 陈奕奕(2016). 情绪词汇加工大脑左右偏侧化认知差异的研究. 心理学进展, 6(3), 290-298.
[2] 陈湛愔, 高俊杰, 张光妍, 何国林, 周曙, 许雯蔚, 何良玉, 林海峰, 梁余航, 陈奕奕(2016). 情绪词汇认知加工诱发电位时空模式的脑功能研究. 中国实用神经病学杂志, 19(15), 1-4.
[3] 陈湛愔, 许雯蔚, 高俊杰, 张光妍, 何国林, 周曙, 何良玉, 林海峰, 梁余航, 陈奕奕(2016). 基于性别差异的情绪词汇诱发电位认知功能研究. 心理学进展, 6(5), 644-652.
[4] 董云英, 周仁来, 高鑫(2014). 积极情绪的唤醒程度对空间工作记忆的影响. 中国临床心理学杂志, (5), 761-767.
[5] 康诚, 王振宏(2013). 依赖于唤醒与效价的情绪记忆增强效应: 自动与控制加工. 心理学报, (9), 970-980.
[6] 欧阳峥峥, 孙世月, 李雪冰, 罗跃嘉(2010). 音乐诱发负性情绪对语音工作记忆和空间工作记忆不同影响的事件相关电位研究. 中华行为医学与脑科学杂志, 19(9), 813-816.
[7] 王海宝, 谌业荣, 余永强, 张诚, 赵本胜, 张达人(2007). 情绪加工中唤醒度的作用功能磁共振成像研究. 中国医学影像技术, (10), 1425-1428.
[8] 张晶, 李岩松, 周仁来(2007). 人脑对高低唤醒情绪图片加工的偏侧化现象: 来自事件相关电位的研究. 第十一届全国心理学学术会议(页2). 开封: 中国心理学会.
[9] Adolphs, R., Russell, J. A., & Tranel, D. (1999). A Role for the Human Amygdale in Recognizing Emotional Arousal from Unpleasant Stimuli. Psychological Science, 10, 167-171. https://doi.org/10.1111/1467-9280.00126
[10] Ashok, J., Daniel, T., & Ralph, A. (2000). A Valence-Specific Lateral Bias for Discriminating Emotional Facial Expressions in Free Field. Cognition and Emotion, 14, 341-353. https://doi.org/10.1080/026999300378860
[11] Atchley, R. A., Ilardi, S. S., & Enloe, A. (2003). Hemispheric Asymmetry in the Processing of Emotionalcontent in Word Meanings: The Effect of Current and Past Depression. Brain and Language, 84, 105-119. https://doi.org/10.1016/S0093-934X(02)00523-0
[12] Bernat, E., Bunce, S., & Shevrin, H. (2001). Event-Related Brain Potentials Differentiate Positive and Negative Mood Adjectives during Both Supraliminal and Subliminal Visual Processing. International Journal of Psychophysiology, 42, 11-34. https://doi.org/10.1016/S0167-8760(01)00133-7
[13] Bradley, M. M., Codispoti, M., Cuthbert, B. N., & Lang, P. J. (2001). Emotion and Motivation I: Defensive and Appetitive Reactions in Picture Processing. Emotion, 1, 276-298. https://doi.org/10.1037/1528-3542.1.3.276
[14] Burgess, C., & Simpson, G. B. (1988). Cerebral Hemispheric Mechanisms in the Retrieval of Ambiguous Word Meanings. Brain and Language, 33, 86-103. https://doi.org/10.1016/0093-934X(88)90056-9
[15] Christman, S. D., & Hackworth, M. D. (1993).Equivalent Perceptual Asymmetries for Free Viewing of Positive and Negative Emotional Expressions in Chimeric Faces. Neuropsychologia, 31, 621-624. https://doi.org/10.1016/0028-3932(93)90056-6
[16] Citron, F. M. M. (2011). Neural Correlates of Written Emotion Word Processing: A Review of Recent Electrophysiological and Hemodynamic Neuroimaging Studies. Brain and Language, 122, 211-226. https://doi.org/10.1016/j.bandl.2011.12.007
[17] Collins, A. M., & Loftus, E. F. (1975). A Spreading-Activation Theory of Semantic Processing. Psychological Review, 82, 407-428. https://doi.org/10.1037/0033-295X.82.6.407
[18] Costafreda, S. G., Brammer, M. J., David, A. S., & Fu, C. H. (2008). Predictors of Amygdala ctivation during the Processing of Emotional Stimuli: A Meta-Analysis of 385 PET and fMRI Studies. Brain Research Review, 58, 57-70. https://doi.org/10.1016/j.brainresrev.2007.10.012
[19] Domes, G., Sehulze, L., Bottger, M. et al. (2010). The Neural Cor-relates of Sex Differences in Emotional Reactivity and Emotion Regulation. Human Brain Mapping, 31, 758-769. https://doi.org/10.1002/hbm.20903
[20] Driver, J., & Vuilleumier, P. (2001). Perceptual Awareness and Its Loss in Un-ilateral Neglect and Extinction. Cognition, 79, 39-88. https://doi.org/10.1016/S0010-0277(00)00124-4
[21] Eviatar, Z., & Zaidel, E. (1991). The Effects of Word Length and Emotionality on Hemispheric Contribution to Lexical Decision. Neu-ropsychologia, 29, 415-428. https://doi.org/10.1016/0028-3932(91)90028-7
[22] Eysenck, M. W., Derakshan, N., & San-tos, R. (2007). Anxiety and Cognitive Performance: Attentional Control Theory. Emotion, 7, 336-353. https://doi.org/10.1037/1528-3542.7.2.336
[23] Ferri, J., Schmidt, J., Hajcak, G. et al. (2013). Neural Correlates of Atten-tional Deployment within Unpleasant Pictures. NeuroImage, 15, 268-277. https://doi.org/10.1016/j.neuroimage.2012.12.030
[24] Gray, J. R., Burgess, G. C., Schaefer, A., Yarkoni, T., Larsen, R. J., & Braver, T. S. (2005). Affective Personality Differences in Neural Processing Efficiency Confirmed Using fMRI. Cognitive, Affective, and Behavioral Neuroscience, 5, 182-190. https://doi.org/10.3758/CABN.5.2.182
[25] Hamann, S., & Mao, H. (2002) . Positive and Negative Emotional Verbal Stimuli Elicit Activity in the Left Amygdala. NeuroReport, 13, 15-19. https://doi.org/10.1097/00001756-200201210-00008
[26] Isenberg, N., Silbersweig, D., Engelien, A., Emmerich, S., Ma-lavade, K., & Beattie, B. (1999). Linguistic Threat Activates the Human Amygdala. Proceedings of the National Academy of Sciences of the United States of America, 96, 10456- 10459. https://doi.org/10.1073/pnas.96.18.10456
[27] Kensinger, E. A., & Corkin, S. (2004). Two Routes to Emotional Memory: Distinct Neural Processes for Valence and Arousal. Pro-ceedings of the National Academy of Sciences of the United States of America, 101, 3310-3315. https://doi.org/10.1073/pnas.0306408101
[28] Kern, R. P., Libkuman, T. M., Otani, H., & Holmes, K. (2005). Emotional Stimuli, Divided Attention, and Memory. Emotion, 5, 408-417. https://doi.org/10.1037/1528-3542.5.4.408
[29] Kring, A. M., & Gordon, A. H. (1998). Sex Differences in Emotion: Expression, Experience, and Physiology. Journal of Personality and Social Psychology, 74, 686-703. https://doi.org/10.1037/0022-3514.74.3.686
[30] Kutas, M., & Federmeier, K. D. (2011). Thirty Years and Counting: Finding Meaning in the N400 Component of the Event- Related Brain Potential (ERP). Annual Review of Psychology, 62, 621-647. https://doi.org/10.1146/annurev.psych.093008.131123
[31] La Bar, K. S. (2007). Beyond Fear: Emotional Memory Me-chanisms in the Human Brain. Current Directions in Psychological Science, 16, 173-177. https://doi.org/10.1111/j.1467-8721.2007.00498.x
[32] Lang, P. J. (2000). Emotion and Motivation: Attention, Perception, and Action. Journal of Sport and Exercise Psychology, 22, 122-140. https://doi.org/10.1123/jsep.22.s1.s122
[33] Li, H., Yuan, J. J., & Ling, C. D. (2008). The Neural Mechanismunderlying the Female Advantage in Identifying Negative Emo-tions: An Event-Related Potential Study. NeuroImage, 23, 33-67.
[34] Mather, M., & Sutherland, M. (2009). Disentangling the Effects of Arousal and Valence on Memory for Intrinsic Details. Emotion Review, 1, 118-119. https://doi.org/10.1177/1754073908100435
[35] McRae, K., Ochsner, K. N., Mauss, I. B., Gabrieli, J. J. D., & Gross, J. J. (2008). Gender Differences in Emotion 26 Regulation: An fMRI Study of Cognitive Reappraisal. Group Processes& In-tergroup Relations, 11, 143-162. https://doi.org/10.1177/1368430207088035
[36] Mehrabian, A., & Russell, J. (1974). An Approach to Environmental Psychology. Cambridge: MIT Press.
[37] Molina, V., Sanz, J., Muñoz, F., Casado, P., Hinojosa, J. A., Sarramea, F. et al. (2005). Dorsolateral Prefrontal Cortex Contribution to Abnormalities of the P300 Component of the Event-Related Potential in Schizophrenia. Psychiatry Research, 140, 17-26. https://doi.org/10.1016/j.pscychresns.2004.04.006
[38] Ortigue, S., Michel, C. M., Murray, M. M., Mohr, C., Carbonnel, S., & Landis, T. (2004). Electrical Neuroimaging Reveals Early Generator Modulation to Emotional Words. NeuroImage, 21, 1242-1251. https://doi.org/10.1016/j.neuroimage.2003.11.007
[39] Osgood, C. E. (1966). Dimensionality of the Semantic Space for Communication via Facial Expressions. Scandinavian Journal of Psychology, 7, 1-30. https://doi.org/10.1111/j.1467-9450.1966.tb01334.x
[40] Pell, M. (1999). Fundamental Frequency Encoding of Linguistic and Emotional Prosody by Right-Hemisphere-Damaged Speakers. Brain and Language, 69, 161-192. https://doi.org/10.1006/brln.1999.2065
[41] Shackman, A. J., Sarinopoulos, I., Maxwe, H. J. S. et al. (2006). Anxiety Se-lectively Disrupts Visuospatial Working Memory. Emotion, 6, 40-61. https://doi.org/10.1037/1528-3542.6.1.40
[42] Sim, S. T. C., & Martinez, C. (2005). Emotion Words Are Remembered Better in the Left Ear. Laterality, 10, 149-159. https://doi.org/10.1080/13576500342000365
[43] Sperry, R. W., Gazzaniga, M. S., & Bogen, J. E. (1969). Interhemis-pheric Relationships: The Neocortical Commissures; Syndromes of Hemispheric Disconnection. In R. W. Sperry, M. S. Gazzaniga, & J. E. Bogen (Eds.), Handbook of Clinical Neurology (Vol. 4, pp. 273-290). Amsterdam: Elsevi-er.
[44] Strauss, E. (1983). Perception of Emotional Words. Neuropsychologia, 21, 99-103. https://doi.org/10.1016/0028-3932(83)90104-5
[45] Talmi, D., Schimmack, U., Paterson, T., & Moscovitch, M. (2007). The Role of Attention and Relatedness in Emotionally Enhanced Memory. Emotion, 7, 89-102. https://doi.org/10.1037/1528-3542.7.1.89