富氧燃烧烟气低温锰氧化物SCR脱硝实验研究
Experimental Research on Low Temperature Manganese Oxides SCR Denitrification for Oxy-Fuel Combustion Flue Gas
DOI: 10.12677/AEP.2016.66015, PDF, HTML, XML,  被引量 下载: 1,876  浏览: 2,617 
作者: 赵栋, 李亚梅, 甄子毅, 王雅婷, 苟 湘*:河北工业大学,能源与环境工程学院,天津
关键词: 富氧燃烧低温SCR锰氧化物Mn3O4/ACOxy-Fuel Combustion Low-Temperature SCR Manganese Oxides Mn3O4/AC
摘要: 氮氧化物是燃煤电厂的主要污染排放源之一,而且烟气中的氮氧化物还会产生硝酸盐等颗粒物,从而进一步形成PM2.5,严重危害人类的身体健康。本论文通过实验研究锰氧化物对低温富氧燃烧烟气的脱硝作用,并且使用溶液燃烧合成以及共沉淀这两种不同的制备方法,得到了不同的结构形态和比表面积的SCR催化剂。在实验范围内,研究发现,在CO2气氛下,Mn3O4脱硝率随温度的上升先增大后减小,当温度为200℃时,Mn3O4脱硝率可达峰值90.2%;在N2气氛下,Mn3O4脱硝率随温度的上升先增大后减小,当温度为200℃时,Mn3O4脱硝率可达峰值93.6%。在CO2气氛下,Mn3O4/AC脱硝率随温度的上升而增大,当温度为300℃时,Mn3O4/AC脱硝率可达峰值75%;在N2气氛下,Mn3O4/AC脱硝率随温度的上升而增大,当温度为300℃时,Mn3O4/AC脱硝率可达峰值78%。在CO2或N2气氛下,Mn3O4/AC脱硝率随氧浓度的上升而增大,随二氧化硫浓度的上升而减小。
Abstract: Nitrogen oxides are one of the major sources of pollution in coal-fired power plants, and they may produce nitrate particles further forming PM2.5, which causes serious damage to human health. In this paper, the denitrification effects of manganese oxides on low-temperature oxy-fuel combustion flue gas were studied based on the different SCR catalysts with different morphology and specific surface area obtained by two different preparation methods of solution combustion synthesis and coprecipitation. The results from experiments show that the denitrification rate of Mn3O4 increases first and then decreases with the increase of temperature under CO2 atmosphere, and it reaches the peak value of 90.2% at 200˚C; the denitrification rate of Mn3O4 increases first and then decreases with the increase of temperature under N2 atmosphere, and it reaches the peak value of 93.6% at 200˚C. As for Mn3O4/AC catalyst, under CO2 atmosphere, the denitrification rate increases with the increase of temperature and reaches 75% at 300˚C; under N2 atmosphere, it increases with the temperature increasing and reaches 78% at 300˚C. In CO2 or N2 atmosphere, Mn3O4/AC denitrification rate increases as the oxygen concentration increases and the rate decreases as the SO2 concentration increases.
文章引用:赵栋, 李亚梅, 甄子毅, 王雅婷, 苟湘. 富氧燃烧烟气低温锰氧化物SCR脱硝实验研究[J]. 环境保护前沿, 2016, 6(6): 108-116. http://dx.doi.org/10.12677/AEP.2016.66015

参考文献

[1] 游卓. 富氧燃烧过程中的NOx控制及其系统效率研究[D]: [博士学位论文]. 杭州: 浙江大学, 2013.
[2] 张玉华, 束航, 范红梅, 张亚平. 商业V2O5-WO3/TiO2催化剂SCR脱硝过程中PM2.5的排放特性及影响因素研究[J]. 中国电机工程学报, 2015(2): 383-389.
[3] Zhang, D., Wang, Z. and Song, C. (2014) Low-Temperature SCR Denitrification with Manganese-Cerium Composite Oxide Supported on Modified ACF. Journal of University of Science and Technology Beijing, 34, 1102-1107.
[4] 刘烨. 溶液燃烧合成制备铁/镍基纳米粉末的研究[D]: [博士学位论文]. 北京: 北京科技大学, 2015.
[5] 贺嘉. 共沉淀法制备载体及催化剂用于耐硫甲烷化的性能研究[D]: [硕士学位论文]. 天津: 天津大学, 2014.
[6] 刘树军. SO2和H2O对Mn-Ge/TiO2低温SCR催化剂的影响[D]: [硕士学位论文]. 西安: 西安建筑科技大学, 2015.
[7] Zhang, Q., Qiu, C. and Xu, H. (2011) Low-Temperature Selective Catalytic Reduction of NO with NH3 over Monolith Catalyst of MnOX/CeO2-ZrO2-Al2O3. Catalysis Today, 175, 171-176. https://doi.org/10.1016/j.cattod.2011.05.009
[8] 谭青, 冯雅晨. 我国烟气脱硝行业现状与前景及SCR脱硝催化剂的研究进展[J]. 化工进展, 2011, 30(2): 212-219.
[9] 张蕊. F掺杂铈钛低温SCR催化剂的制备及脱硝性能研究[D]: [硕士学位论文]. 南京: 南京理工大学, 2014.
[10] 张凯. 富氧燃烧烟气低温SCR脱硝的实验研究[D]: [硕士学位论文]. 天津: 河北工业大学, 2014.
[11] Shin, B. (2016) Physico-Chemical Property and Catalytic Activity of a CeO2-Doped MnOx-TiO2 Catalyst with SO2 Resistance for Low-Temperature NH3-SCR of NOx. Journal of Nanoscience and Nanotechnology, Mater, Busan, 16, 4370-4376. https://doi.org/10.1166/jnn.2016.10977
[12] Li, Y., Yi, H. and Tang, X. (2016) Study on the Performance of Simultaneous Desulfurization and Denitrification of Fe3O4-TiO2 Composites. Chemical Engineering Journal, 304, 89-97. https://doi.org/10.1016/j.cej.2016.06.035
[13] 贺尧祖, 李建军. 燃煤电厂SCR催化剂再生和回收利用研究进展[J]. 四川化工, 2015(6): 22-24.
[14] Chen, L., Sun, C. and Tang, C. (2016) Influencing Factors for NOx Reduction by SCR. Advanced Materials Research, 591-593, 2418-2421.
[15] 吕刚, 吴虎, 宋崇林. Mn/ZSM-5催化剂及其SCR催化性能研究[J]. 工程热物理学报, 2011, 32(9): 1597-1600.
[16] 史伟伟. SCR脱硝催化剂再生浸渍及其SO2氧化控制[D]: [硕士学位论文]. 广州: 华南理工大学, 2013.