大蒜废弃物吸附柠檬酸淋洗液中镉离子的研究
Removal of Cadmium Ions from the Citric Acid Solution Using Garlic Waste
DOI: 10.12677/AEP.2016.66016, PDF, HTML, XML, 下载: 1,682  浏览: 3,712  科研立项经费支持
作者: 尹立普, 黄 凯:北京科技大学冶金与生态工程学院,北京
关键词: 土壤淋洗柠檬酸生物吸附剂大蒜废弃物洗水循环Soil Washing Citric Acid Biosorption Garlic Peel Gel Recycling of Washing Effluent
摘要: 柠檬酸试剂对复合重金属污染土壤具有良好的洗脱效果,兼之对环境友好等优点而在土壤修复领域备受关注。如何高效经济地脱除淋洗液中的重金属离子,实现柠檬酸淋洗液的循环使用,是土壤淋洗技术实用化过程中非常关键的问题。本文提出生物吸附的方法,来实现对柠檬酸溶液介质中镉离子的脱除。具体采用了大蒜皮生物吸附剂,对人工配制的柠檬酸溶液中镉离子的吸附脱除进行了实验考察,包括溶液pH、吸附时间、吸附剂用量、柠檬酸浓度、共存离子、搅拌速度、反应温度等实验参数对脱除效果的影响。实验结果表明60分钟内吸附可达平衡;pH为4时吸附效率最佳;吸附剂用量增加,吸附效率迅速升高;反应温度、搅拌速度和共存干扰离子对吸附效果的影响不显著。吸附剂经过多次的吸附/解吸操作后,还可以对镉离子具有良好的吸附效果。
Abstract: Citric acid, as an ecofriendly reagent, can be used to wash the soil polluted by heavy metal ions effectively, and it is also concerned in the field of soil remediation. But how to remove heavy metal ions effectively in the leacheate and make the citric acid solution be recycled and reused for soil washing, is rather critical in the soil washing process. The present study proposed a method of biosorption, which is used to remove Cd2+ in the soil washed wastewater. It uses saponified garlic peel (GP) gel as the adsorbent to remove Cd2+ in the artificial citric solution. The parameters were evaluated systematically including pH, reaction time, adsorbent dosage, citric concentration, coexisting ions, temperature and shaking speed, etc. Results show that adsorption reaches equilibrium within 60 minutes, and when pH is 4, adsorption efficiency is highest. With the increase of adsorpbent dosage, adsorption efficiency was improved significantly, and the parameters including coexisting ions temperature and shaking speed have no significant effect. In addition, after several operations of adsorption and desorption, garlic peel gel still can remove Cd2+ effectively.
文章引用:尹立普, 黄凯. 大蒜废弃物吸附柠檬酸淋洗液中镉离子的研究[J]. 环境保护前沿, 2016, 6(6): 117-129. http://dx.doi.org/10.12677/AEP.2016.66016

参考文献

[1] Singh, O.V., Labana, S., Pandey, G., et al. (2003) Phytoremediation: An Overview of Metallic Ion Decontamination from Soil. Journal of Applied Microbiology and Biotechnology, 61, 405-412. https://doi.org/10.1007/s00253-003-1244-4
[2] 高晓宁. 土壤重金属污染现状及修复技术研究进展[J]. 现代农业科技, 2013(9): 229-231.
[3] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[R]. 2014.
[4] 骆永明, 滕应. 我国土壤污染退化状况及防治对策[J]. 土壤, 2006, 38(5): 505-508.
[5] 王秀丽, 徐建民, 谢正苗, 等. 重金属铜和锌污染对土壤环境质量生物学指标的影响[J]. 浙江大学学报: 农业与生命科学版, 2002, 28(2): 192-193.
[6] 王存龙, 庞绪贵, 杨丽原, 等. 土壤重金属生态危害评价:以典型金矿区为例[J]. 地球化学, 2013(6): 557-566.
[7] 周明冬, 秦晓辉, 候洪, 苏海英. 农田土壤重金属的危害及防控措施[J]. 环境与可持续发展, 2014(2): 57-58.
[8] 陈晓杰, 何政伟. 基于模糊综合评价的土壤环境质量研究: 以九龙县里伍铜矿区为例[J]. 水土保持研究, 2012, 19(1): 130-133.
[9] 杨军, 陈同斌, 雷梅, 等. 北京市再生水灌溉对土壤、农作物的重金属污染风险[J]. 自然资源学报, 2011, 26(2): 209-217.
[10] Dermont, G., Bergeron, M. and Mercier, G. (2008) Soil Washing for Metal Removal: A Review of Physical/Chemical Technologies and Field Applications. Journal of Hazardous Materials, 15, 1-31. https://doi.org/10.1016/j.jhazmat.2007.10.043
[11] Moutsatsou, A., Gregou, M., Matsas, D. and Protonotarios, V. (2006) Washing as a Remediation Technology Applicable in Soils Heavily Polluted by Mining-Metallurgical Activities. Chemosphere, 63, 1632-1640. https://doi.org/10.1016/j.chemosphere.2005.10.015
[12] 赵娜, 崔岩山, 付彧, 等. 乙二胺四乙酸(EDTA)和乙二胺二琥珀酸(EDDS)对污染土壤中Cd, Pb的浸提效果及其风险评估[J]. 环境化学, 2011, 30(05): 958-963.
[13] Jelusic, M. and Lestan, D. (2014) Effect of EDTA Washing of Metal Polluted Garden Soils. Science of the Total Environment, 457, 132-141. https://doi.org/10.1016/j.scitotenv.2013.11.049
[14] Zou, Z.L., Qiu, R.L., Zhang, W.H., et al. (2008) The Study of Operating Variables in Soil Washing with EDTA. Environmental Pollution, 157, 229-236. https://doi.org/10.1016/j.envpol.2008.07.009
[15] 罗冰, 张清东. 柠檬酸浸出土壤中铜, 锌的优化设计[J]. 环境工程学报, 2013, 7(9): 3629-3634.
[16] 雷鸣, 田中干也, 廖柏寒, 等. 硫化物沉淀法处理含EDTA的重金属废水[J]. 环境科学研究, 2008, 21(01): 150- 154.
[17] 李玉双, 胡晓钧, 宋雪英, 等. 柠檬酸对重金属污染土壤的淋洗修复效果与机理[J]. 沈阳大学学报, 2012, 24(2): 6-9.
[18] Zeng, Q.R., Sauve, S., Allen, H.E. and Hendershot, W.H. (2005) Recycling EDTA Solutions Used to Remediate Metal-Polluted Soils. Environmental Pollution, 133, 225-231. https://doi.org/10.1016/j.envpol.2004.06.006
[19] 王建龙, 陈灿. 生物吸附法去除重金属离子的研究进展[J]. 环境科学学报, 2010, 30(4): 673-701.
[20] 梁莎, 冯宁川, 郭学益. 生物吸附法处理重金属废水研究进展[J]. 水处理技术, 2009, 35(3): 13-17.
[21] Ahluwalia, S.S. and Goyal, D. (2007) Microbial and Plant Derived Biomass for Removal of Heavy Metals from Wastewater. Bioresource Technology, 98, 2243-2257. https://doi.org/10.1016/j.biortech.2005.12.006
[22] 李思, 章宇飞, 张金辉, 等. 改性材料吸附处理重金属废水的研究进展[J]. 当代化工, 2013(8): 1093-1096.
[23] 严素定. 废水重金属的生物吸附研究进展[J]. 上海化工, 2007, 32(6): 1-5.
[24] 许超, 夏北城, 林颖. 柠檬酸对中低污染土壤中重金属的淋洗动力学[J]. 生态环境学报, 2009, 18(2): 507-510.