盐沼湿地沉积物表层微型藻类生物量分析综述
Review of Benthic Microalgae Biomass in Surface Sediments of Salt Marshes in Coastal Wetlands
DOI: 10.12677/AMS.2016.34017, PDF, HTML, XML,  被引量 下载: 1,734  浏览: 3,805  国家自然科学基金支持
作者: 陈禹润, 左 平:南京大学地理与海洋科学学院,江苏 南京
关键词: 底栖微藻生物量盐沼湿地初级生产力叶绿素aBenthic Microalgae Biomass Salt Marshes Primary Production Chlorophyll a
摘要: 盐沼湿地中的底栖微藻是该湿地生态系统的重要初级生产者,是多年来的研究热点之一。本文在国内外众多研究观测的基础上,尝试对底栖微藻研究进行综合性的文献总结,旨在对底栖微藻的相关问题与科研成果进行一个初步小结和概括。生物量或初级生产力仍是研究底栖微藻的基础指标。基于多地长期观测数据,发现底栖微藻的生物量存在显著的时空差异:地区性差异巨大,同一区域季相变化明显。沉积物粒度、盐沼植被、营养物浓度等多种因素共同作用,综合影响底栖微藻的生长。
Abstract: Benthic microalgae of salt marshes are an important producer in wetland ecosystems, which has drawn the world’s attention for many years. The article summarized the researches on relevant issues and scientific achievements about benthic microalgae. The biomass or primary production is still the basic indicators. Biomass of benthic microalgae has various temporal and spatial char-acteristics in different coastal wetlands. There are many factors, such as sediment grain size, veg-etation of salt marshes, nutrient concentration, which combined together to affect the growth of benthic microalgae.
文章引用:陈禹润, 左平. 盐沼湿地沉积物表层微型藻类生物量分析综述[J]. 海洋科学前沿, 2016, 3(4): 127-134. http://dx.doi.org/10.12677/AMS.2016.34017

参考文献

[1] Williams, T.P., Bubb, J.M. and Lester, J.N. (1994) Metal Accumulation within Salt Marsh Environments: A Review. Marine Pollution Bulletin, 28, 277-290. https://doi.org/10.1016/0025-326X(94)90152-X
[2] Boorman, L.A. (2003) Salt Marsh Review: An Overview of Coastal Saltmarshes, Their Dynamic and Sensitivity Characteristics for Conservation and Management. Peterborough: JNCC Report, No.334, 6-7.
[3] 王卿. 盐沼植物群落研究进展: 分布、演替及影响因子[J]. 生态环境学报, 2012, 21(2): 375-388.
[4] 童春富. 河口湿地生态系统结构、功能与服务: 以长江口为例[D]: [博士学位论文]. 上海: 华东师范大学, 2004.
[5] Whitney, D.E. and Darley, W.M. (1983) Effect of Light Intensity upon Salt Marsh Benthic Microalgal Photosynthesis. Marine Biology, 75, 249-252. https://doi.org/10.1007/BF00406009
[6] 全为民. 长江口盐沼湿地食物网的初步研究: 稳定同位素分析[D]: [博士学位论文]. 上海: 复旦大学, 2007.
[7] Sullivan, M.J. and Moncreiff, C.A. (1990) Edaphic Algae Are an Important Component of Salt Marsh Food-Webs: Evidence from Multiple Stable Isotope Analyses. Marine Ecology Progress Series, 62, 149-159. https://doi.org/10.3354/meps062149
[8] Litvin, S.Y. and Weinstein, M.P. (2003) Life History Strategies of Estuarine Nekton: The Role of Marsh Macrophytes, Benthic Microalgae, and Phytoplankton in the Trophic Spectrum. Estuaries, 26, 552-562. https://doi.org/10.1007/BF02823730
[9] MacIntyre, H.L. and Cullen, J.J. (1996) Primary Production by Suspended and Benthic Microalgae in a Turbid Estuary: Time-Scales of Variability in San Antonio Bay, Texas. Marine Ecology Progress Series, 145, 245-268. https://doi.org/10.3354/meps145245
[10] Cahoon, L.B. & Safi, K.A. (2002) Distribution and Biomass of Benthic Microalgae in Manukau Harbour, New Zealand. New Zealand Journal of Marine and Freshwater Research, 36, 257-266. https://doi.org/10.1080/00288330.2002.9517084
[11] 商栩. 长江口盐沼湿地底栖微藻的分布特征及其对有机质产出的贡献[J]. 海洋学报, 2009, 31(5): 40-47.
[12] Brito, A., Newton, A., Tett, P. and Fernandes, T.F. (2009) Temporal and Spatial Variability of Microphytobenthos in a Shallow Lagoon: Ria Formosa (Portugal). Estuarine Coastal and Shelf Science, 83, 67-76. https://doi.org/10.1016/j.ecss.2009.03.023
[13] 周伟华, 袁翔城, 霍文毅. 长江口邻域叶绿素a和初级生产力的分布[J]. 海洋学报, 2004, 26(3): 143-150.
[14] Perissinotto, R., Nozais, C. and Kibirige, I. (2002) Spatiotemporal Dynamics of Phytoplankton and Microphytobenthos in a South African Temporarily-Open Estuary. Estuarine, Coastal, and Shelf Science, 55, 47-58. https://doi.org/10.1006/ecss.2001.0885
[15] 王丹丹. 江苏如东海岸互花米草盐沼沉积物叶绿素a分布特征[J]. 生态学杂志, 2012, 31(9): 2247-2254.
[16] Cadée, G.C. and Hegeman, J. (1977) Distribution of Primary Production of the Benthic Microflora and Accumulation of Organic Matter on a Tidal Flat Area, Balgzand, Dutch Wadden Sea. Netherlands Journal of Sea Research, 11, 24-41. https://doi.org/10.1016/0077-7579(77)90019-9
[17] Colijn, F. and de Jonge, V.N. (1984) Primary Production of Microphytobenthos in the Ems-Dollard Estuary. Marine Ecology—Progress Series, 14, 185-196. https://doi.org/10.3354/meps014185
[18] 李少朋. 潮滩底栖微藻生物量垂直变化对其遥感反演模式的影响[J]. 生态科学, 2014, 33(6): 1155-1159.
[19] 宁修仁, 刘子琳. 象山港潮滩底栖微型藻类现存量和初级生产力[J]. 海洋学报, 1999, 21(3): 98-105.
[20] 姜祖辉. 胶州湾红岛潮间带底栖微藻种类组成及其生物量变化[J]. 海洋水产研究, 2007, 28(5): 74-80.
[21] 陈宇炜, 高锡云. 浮游植物叶绿素a含量测定方法的比较测定[J]. 湖泊科学, 2000, 12(2): 185-187.
[22] Lorenzen, C.J. (1967) Determination of Chlorophyll and Pheo-Pigments: Spectrophotometric Equations. Limnology and Oceanography, 12, 343-346. https://doi.org/10.4319/lo.1967.12.2.0343
[23] Whitney, D.E. and Darley, W.M. (1979) A Method for the Determination of Chlorophyll a in Samples Containing Degradation Products. Limnology and Oceanography, 24, 183-186. https://doi.org/10.4319/lo.1979.24.1.0183
[24] Cahoon, L.B. and Cooke, J.E. (1992) Benthic Microalgal Production in Onslow Bay, North Carolina, USA. Marine Ecology Progress Series, 84, 185-196. https://doi.org/10.3354/meps084185
[25] 吕鹏翼. 荧光法测定水体叶绿素的影响因素研究[D]: [硕士学位论文]. 河北: 河北科技大学, 2014.
[26] 王建, 王骥. 浮游植物叶绿素与脱镁叶绿素的测定方法[J]. 武汉植物学研究, 1984, 2(2): 321-328.
[27] 王荣. 荧光法测定浮游植物色素计算公式的修正[J]. 海洋科学, 1986, 10(3): 1-5.
[28] 孙力. 荧光法与分光光度法测定叶绿素a的对比试验[J]. 安徽化工, 2003, 29(5): 46-47.
[29] 国家海洋局及其相关单位. GB/T. 12763.3-2007. 海洋调查规范[S]. 北京: 中国标准出版社, 2007.
[30] Pinckney, J. and Zingmark, R.G. (1993) Biomass and Production of Benthic Microalgal Communities in Estuarine Habitats. Coastal and Estuarine Research Federation, 16, 887-897.
[31] Grippo, M.A., Fleeger, J.W., Rabalais, N.N., Condrey, R. and Carman, K.R. (2010) Contribution of Phytoplankton and Benthic Microalgae to Inner Shelf Sediments of the North-Central Gulf of Mexico. Continental Shelf Research, 30, 456-466. https://doi.org/10.1016/j.csr.2009.12.015
[32] Velasquez (2005) Benthic Primary Production in Coastal Salt Marsh Systems. Master Thesis, Augusta State University, Augusta.
[33] 李万会. 滩涂沉积物中叶绿素a浓度与沉积特性的关系[J]. 华东师范大学学报(自然科学版), 2007, 2007(4): 26- 32.
[34] Sullivan (1988) Primary Production of Edaphic Algal Communities in a Mississippi Salt Marsh. Journal of Phycology, 24, 49-58.
[35] De Jong, D.J. and de Jonge, V.N. (1995) Dynamics and Distribution of Microphytobenthic Chlorophyll-a in the Western Scheldt Estuary (SW Netherlands). Hydrobiologia, 311, 21-30. https://doi.org/10.1007/BF00008568
[36] Quan, W., Zhang, H., Wu, Z., Jin, S., Tang, F. and Dong, J. (2016) Does Invasion of Spartina alterniflora Alter Microhabitats and Benthic Communities of Salt Marshes in Yangtze River Estuary? Ecological Engineering, 88, 153-164. https://doi.org/10.1016/j.ecoleng.2015.12.026
[37] Joint, I.R. (1978) Microbial-Production of an Estuarine Mudflat. Estuarine and Coastal Marine Science, 7, 185-195. https://doi.org/10.1016/0302-3524(78)90074-9
[38] 贺强, 安渊, 崔保山. 滨海盐沼及其植物群落的分布与多样性[J]. 生态环境学报, 2010, 19(3): 657-664.
[39] 曹磊, 宋金明, 李学刚, 袁华茂, 李宁, 段丽琴. 中国滨海盐沼湿地碳收支与碳循环过程研究进展[J]. 生态学报, 2013, 33(17): 5141-5152.
[40] Thoresen, M. (2004) Temporal and Spatial Variation in Seston Available to Oysters and the Contribution of Benthic Diatoms to Their Diet in the Duplin River, Georgia. PhD Thesis, University of Georgia, Georgia.
[41] CahoonL, B. (1999) The Role of Benthic Microalgae in Neritic Ecosystem. Oceanography and Marine Biology: An Annual Review, 37, 47-86.