石油天然气学报  >> Vol. 38 No. 4 (December 2016)

造斜率影响因素与预测方法研究
Research on Influential Factors of Build-up Rate and Prediction Method

DOI: 10.12677/JOGT.2016.384040, PDF, HTML, XML, 下载: 1,024  浏览: 3,056  国家自然科学基金支持

作者: 张 红, 涂忆柳, 施 雷, 卢 昌, 冯 定:非常规油气湖北省协同创新中心(长江大学),湖北 武汉 ;长江大学机械工程学院,湖北 荆州 ;冯一璟:中国石油大学(北京)机械与储运工程学院,北京

关键词: 造斜率影响因素导向工具结构预测方法Kriging代理模型Build-Up Rate Influential Factor Structures of Steering Tool Prediction Method Kriging Surrogate Model

摘要: 科学高效的造斜率预测方法是优选钻井参数、提高井眼轨迹控制精度和效率的关键技术,对复杂定向井的高效、低成本开发具有重要意义。造斜率预测受多种因素的耦合影响,具有模糊性、随机性、非线性等特点,用数学力学模型难以描述。提出将Kriging代理模型应用到导向工具的造斜率预测中。从造斜率影响因素入手,重点分析了导向工具结构及造斜原理的差异对造斜率的影响;将现有的造斜率预测方法归纳为几何预测法、力学预测法和回归分析预测法3大类进行了综述和对比分析,指出了现有方法的局限性;从回归分析预测法的角度,提出了一种基于Kriging代理模型的造斜率预测新方法,分析了该方法的科学性和高效性,提出了使用该方法的具体预测步骤和应注意的关键问题,为造斜率预测提供了新途径。
Abstract: The scientific and efficient prediction method of build-up rates was the key technology to optimize drilling parameters and to improve wellbore trajectory control accuracy and efficiency. It was of great significance for the efficient and low-cost development of complex directional wells. The prediction of build-up rate, which had the characteristics of fuzziness, randomness and non-    linearity, was affected by various coupling factors. As a result, it was difficult to describe with ma-thematical and mechanical models, and it was proposed that Kriging surrogate model was applied to predict the build-up rate of steering tools. Starting from the analysis of the factors affecting the build-up rate, the influence of difference between the structure and build-up principles of the steering tools was emphatically analyzed. The current methods were summarized into three types of geometric prediction, mechanic prediction and regression analysis and prediction. By compar-ison between them, their limitations were pointed out. From the aspect of regression analysis and prediction, a novel method based on the build-up rate of Kriging surrogate model is proposed; the scientificalness and high efficiency of the method are analyzed; the concrete procedures for pre-diction and key issues for attention are proposed; it provides new ways for predicting the build-up rate.

文章引用: 张红, 冯一璟, 涂忆柳, 施雷, 卢昌, 冯定. 造斜率影响因素与预测方法研究[J]. 石油天然气学报, 2016, 38(4): 80-89. http://dx.doi.org/10.12677/JOGT.2016.384040

参考文献

[1] Warren, T. (1998) Rotary-Steerable Technology—Part 1: Technology Gains Momentum. Oil & Gas Journal, 96, 101- 105.
[2] Sutko, A.A., Myers, G.M. and Gaston, J.D. (1979) Directional Drilling—A Comparison of Measured and Predicted Changes in Hole Angle. Journal of Petroleum Technology, 32.
[3] 高德利. 井眼轨迹控制[M]. 东营: 石油大学出版社, 1994: 180-182.
[4] 唐雪平, 苏义脑, 陈祖锡. 求解中短半径弯螺杆钻具的纵横弯曲法[J]. 力学与实践, 2011, 33(3): 20-24.
[5] Karisson, H., Brassfield, T. and Krueger, V. (1985) Performance Drilling Optimiza-tion. SPE/IADC Drilling Conference, New Orleans, 5-8 March 1985. https://doi.org/10.2118/13474-MS
[6] Karlsson, H., Cobbley, R. and Jaques, G.E. (1989) New Developments in Short-, Medium-, and Long-Radius Lateral Drilling. SPE/IADC 18706. SPE/IADC Drilling Conference, New Orleans, 28 February-3 March 1989. https://doi.org/10.2118/18706-ms
[7] Hassen, B.R. and MacDonald, A.J. (1990) Field Comparison of Medium- and Long-Radius Horizontal Wells Drilled in the Same Reservoir. SPE/IADC Drilling Conference, Houston, 27 February-2 March 1990. https://doi.org/10.2118/19986-ms
[8] 王宝新, 许岱文, 程存志. 弯壳动力钻具造斜率的几何分析与计算[J]. 石油钻采工艺, 1994, 16(1): 32-37.
[9] 帅健, 于永南, 洪学福. 短弯外壳导向钻具的造斜率计算[J]. 石油钻采工艺, 1996, 18(1): 4-9.
[10] 苏义脑, 唐雪平, 高兰. 双弯与三弯钻具对单弯钻具的等效问题[J]. 石油学报, 2002, 23(2): 77-81.
[11] 唐雪平, 陈祖锡, 汪光太, 等. 中短半径水平井弯壳螺杆钻具造斜率预测方法研究[J]. 钻采工艺, 2000, 23(3): 13-18.
[12] 刘修善, 何树山, 邹野. 导向钻具几何造斜率的研究[J]. 石油学报, 2004, 25(6): 83-87.
[13] Liu, X. (2005) Improved Method Evaluates Deflection Performance of Bent Housing Motors. Oil & Gas Journal, 103, 42-46.
[14] Sugiura, J. (2008) Optimal BHA Design for Steerability and Stability with Configurable Rotary-Steerable System. SPE114599. https://doi.org/10.2118/114599-ms
[15] 闫铁, 王辉, 毕雪亮. 弯壳体导向钻具造斜能力影响因素分析[J]. 西部探矿工程, 2010, 22(1): 35-39.
[16] 李兴伟. 带扶正器弯螺杆钻具的造斜率计算及应用[J]. 石油矿场机械, 2013, 42(12): 90-93.
[17] 张胜杰, 汪旭伟. 利用修正的三点定圆法计算单弯螺杆造斜率及其应用[J]. 内蒙古石油化工, 2015(1): 35-36.
[18] Birades, M. and Fenoul, R. (1988) A Microcomputer Pro-gram for Prediction of Bottomhole Assembly Trajectory. SPE15285. https://doi.org/10.2118/15285-pa
[19] Birades, M. and Gazaniol, D. (1989) ORPHEE 3D: Original Results on the Directional Behavior of BHA’s with Bent Subs. SPE19244. https://doi.org/10.2118/spe-19244-ms
[20] 于永南, 韩志勇. 短半径水平井双弯马达造斜率的研究[J]. 石油钻探技术, 1996, 24(2): 4-7.
[21] 孙健, 李黔, 王治平, 等. 中短半径水平井造斜率与螺杆钻具应力研究[J]. 天然气工业, 2007, 27(6): 78-80.
[22] Murphey, C.E. and Cheatham Jr., J.B. (1966) Hole Deviation and Drill String Behavior. SPE1259. https://doi.org/10.2118/1259-pa
[23] 苏义脑. 极限曲率法及其应用[J]. 石油学报, 1997, 18(3): 110-114.
[24] 于宗仁, 张微坤, 张建明, 等. 小口径孔底动力螺杆钻具组合造斜率预测实验研究[J]. 实验技术与管理, 2008, 25(11): 35-38.
[25] Ho, H.S. (1987) Prediction of Drilling Trajectory in Directional Wells via a New Rock-Bit Interaction Model. SPE16658. https://doi.org/10.2118/16658-ms
[26] 高德利, 刘希圣, 黄荣樽. 钻头与地层相互作用的三维宏观分析[J]. 石油大学学报(自然科学版), 1989(1): 23-31.
[27] Pastusek, P.E., Brackin, V.J. and Lutes, P.J. (2005) A Fundamental Model for Prediction of Hole Curvature and Build Rates with Steerble Bottomhole Assemblies. SPE95546.
[28] 张建群, 阎铁. 钻头与地层相互作用分析及井眼轨迹预测[J]. 石油学报, 1991, 12(4): 102-110.
[29] 刘永辉, 付建红, 刘明国, 等. 考虑钻头与地层相互作用的侧钻水平井轨迹预测方法[J]. 钻采工艺, 2006, 29(1): 9-11.
[30] Noynaert, S.F. (2013) AIMR (Azimuth and Inclination Modeling in Realtime): A Method for Prediction of Dog-Leg Severity Based on Mechanical Specific Energy. Texas A&M University, College Station.
[31] 王俊良, 邓传光. 组合钻具造斜率的回归分析及其应用[J]. 石油钻采工艺, 1992, 14(1): 25-30.
[32] 柳贡慧, 刘伟, 刘忠, 等. 利用四因素三水平正交回归分析法进行钻具造斜率预测研究[J]. 石油天然气学报, 2010, 32(3): 108-112.
[33] Chen, Z., Qiu, H., Gao, L., Li, X. and Li, P. (2014) A Local Adaptive Sampling Method for Re-liability-based Design Optimization Using Kriging Model. Structural and Multidisciplinary Optimization, 49, 401-416. https://doi.org/10.1007/s00158-013-0988-4
[34] Cressie, N. (1990) The Origins of Kriging. Mathematical Geology, 22, 239-252. https://doi.org/10.1007/BF00889887
[35] Gao, Y. and Wang, X. (2008) An Effective Warpage Optimization Method in Injection Molding Based on the Kriging Model. The International Journal of Advanced Manufacturing Technology, 37, 953-960. https://doi.org/10.1007/s00170-007-1044-6
[36] Jaquet, O. (1989) Factorial Kriging Analysis Applied to Geological Data from Petroleum Exploration. Mathematical Geology, 21, 683-691. https://doi.org/10.1007/BF00893316
[37] Sepúlveda, F., Rosenberg, M.D., Rowland, J.V. and Simmons, S.F. (2012) Kriging Predictions of Drill-Hole Stratigraphy and Temperature Data from the Wairakei Geothermal Field, New Zealand: Implications for Conceptual Modeling. Geothermics, 42, 13-31. https://doi.org/10.1016/j.geothermics.2012.01.002
[38] 姚拴宝, 郭迪龙, 孙振旭, 等. 基于Kriging代理模型的高速列车头型多目标优化设计[J]. 中国科学: 技术科学, 2013, 43(2): 186-200.
[39] Zheng, J., Shao, X., Gao, L., Jiang, P. and Li, Z. (2013) A Hybrid Variable-fidelity Global Approximation Modeling Method Combining Tuned Radial Basis Function Base and Kriging Correction. Journal of Engineering Design, 24, 604-622. https://doi.org/10.1080/09544828.2013.788135
[40] Lophaven, S.N., Nielsen, H.B. and Sondergaard, J. (2002) DACE—A Matlab Kriging Toolbox (Version 2) Informatics and Mathematical Modeling. Technical University of Denmark, Copenhagen.
[41] Zhou, X.J., Ma, Y.Z., Tu, Y.L. and Feng, Y. (2013) Ensemble of Surrogates for Dual Response Surface Modeling in Robust Parameter Design. Quality and Reliability Engineering International, 29, 173-197. https://doi.org/10.1002/qre.1298
[42] Wan, W. and Birch, J.B. (2011) A Semiparametric Technique for the Mul-ti-Response Optimization Problem. Quality and Reliability Engineering International, 27, 47-59. https://doi.org/10.1002/qre.1106