CSA  >> Vol. 6 No. 12 (December 2016)

    基于速度场的手持重拍摄视频检测算法
    Analysis of Hand-Held Recaptured Video Detection Algorithm Exploiting Velocity Field

  • 全文下载: PDF(919KB) HTML   XML   PP.761-771   DOI: 10.12677/CSA.2016.612091  
  • 下载量: 735  浏览量: 2,041   国家自然科学基金支持

作者:  

蒋卓彦,孙锬锋,蒋兴浩:上海交通大学,上海

关键词:
被动检测手持重拍摄速度场速度场变化程度SVMPassive Detection Hand-Held Recapture Velocity Field Velocity Field Change Degree SVM

摘要:

视频重拍摄检测是检测视频侵权的重要方法之一,可用于被动检测视频的版权。本文针对手持重拍摄视频,结合了手持拍摄视频的特点,对视频帧间进行速度场计算,根据连续两个速度场的方向判定速度场的变化程度,提取多个变化程度以得到一组速度场变化程度值,选取该组值的平均值与方差作为二维手持抖动特征,并使用支持向量机(support vector machine, SVM)进行重拍摄检测实验。对比实验证明该算法具有更高的准确率。

Video recaptured detection is one of the important methods of detecting video infringement. It is a passive detection method and can be used for video copyright. In this paper, combining with the hand-held video characteristics and the velocity field algorithm, we calculate the velocity field between frames, according to the moving trend to judge whether velocity field changes or not. We extract a set of velocity change values and select the average and variance value as a two-dimen- sional characteristic, and finally we use support vector machine (SVM) for experiments. The experiment result shows that this algorithm has a higher accuracy.

文章引用:
蒋卓彦, 孙锬锋, 蒋兴浩. 基于速度场的手持重拍摄视频检测算法[J]. 计算机科学与应用, 2016, 6(12): 761-771. http://dx.doi.org/10.12677/CSA.2016.612091

参考文献

[1] Rolland-Neviere, X., Chupeau, B., Doerr, G., et al. (2012) Forensic Characterization of Camcorded Movies: Digital Cinema vs. Celluloid Film Prints. Proceedings of SPIE—The International Society for Optical Engineering, Burlin-game, 9 February 2012, 83030R-83030R-11.
[2] Lee, J.W., Lee, M.J., Lee, H.Y., et al. (2012) Screenshot Identification by Analysis of Directional Inequality of Interlaced Video. EURASIP Journal on Image and Video Processing, No. 1, 1-15.
https://doi.org/10.1186/1687-5281-2012-7
[3] Visentini-Scarzanella, M. and Dragotti, P.L. (2012) Video Jitter Analysis for Automatic Bootleg Detection. 2012 IEEE 14th International Workshop on Multimedia Signal Processing (MMSP), Banff, 17-19 September 2012, 101-106.
https://doi.org/10.1109/MMSP.2012.6343423
[4] Bestagini, P., Visentini-Scarzanella, M., Tagliasacchi, M., et al. (2013) Video Recapture Detection Based on Ghosting Artifact Analysis. 2013 IEEE International Conference on Image Processing, Melbourne, 15-18 September 2013, 4457-4461.
https://doi.org/10.1109/ICIP.2013.6738918
[5] Moreira-Perez, J.J., Chupeau, B., Doerr, G., et al. (2013) Ex-ploring Color Information to Characterize Camcorder Piracy. 2013 IEEE International Workshop on Information Forensics and Security (WIFS), Guangzhou, 18-21 November 2013, 132-137.
https://doi.org/10.1109/WIFS.2013.6707807
[6] Thongkamwitoon, T., Muammar, H. and Dragotti, P.L. (2015) An Image Recapture Detection Algorithm Based on Learning Dictionaries of Edge Profiles. IEEE Transactions on Information Forensics and Security, 10, 953-968.
https://doi.org/10.1109/TIFS.2015.2392566
[7] Mahdian, B., Novozámský, A. and Saic, S. (2015) Identification of Aliasing-Based Patterns in Re-Captured LCD Screens. 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, 27-30 September 2015, 616-620.
https://doi.org/10.1109/ICIP.2015.7350872
[8] 吴俞醒. 基于连续性特征的视频帧间篡改检测算法的研究与实现[D]: [硕士学位论文]. 上海: 上海交通大学, 2015.
[9] Chupeau, B., Baudry, S. and Doerr, G. (2014) Forensic Characterization of Pirated Movies: Digital Cinema Cam vs. Optical Disc Rip. 2014 IEEE International Workshop on Information Forensics and Security (WIFS), Atlanta, 3-5 December 2014, 155-160.
https://doi.org/10.1109/WIFS.2014.7084320
[10] Hajj-Ahmad, A, Baudry, S., Chupeau, B., et al. (2015) Flicker Forensics for Pirate Device Identification. Proceedings of the 3rd ACM Workshop on Information Hiding and Multimedia Security, Portland, 17-19 June 2015, 75-84.
https://doi.org/10.1145/2756601.2756612
[11] Schaber, P., Kopf, S., Wetzel, S., et al. (2015) Cammark: Analyzing, Modeling, and Simulating Artifacts in Camcorder Copies. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 11, 42.
https://doi.org/10.1145/2700295
[12] Schaber, P., Dong, S., Guthier, B., et al. (2015) Modeling Temporal Effects in Re-Captured Video. Proceedings of the 23rd ACM international conference on Multimedia, Brisbane, 26-30 October 2015, 1279-1282.
https://doi.org/10.1145/2733373.2806405
[13] Hajj-Ahmad, A., Doerr, G., Wu, M., et al. (2016) Flicker Forensics for Camcorder Piracy. IEEE Transactions on Information Forensics and Security, 12, 89-100.
https://doi.org/10.1109/TIFS.2016.2603603