钙钛矿CH3NH3PbI3结构和电子性质的第一性原理研究
First-Principles Study of Structural and Electronic Properties of Perovskite-Type CH3NH3PbI3
DOI: 10.12677/APP.2016.612035, PDF, HTML,  被引量 下载: 3,204  浏览: 9,903  国家自然科学基金支持
作者: 刘洪飞*:天津城建大学理学院,天津;张众维:天津城建大学计算机与信息工程学院,天津
关键词: 第一性原理CH3NH3PbI3电子性质First-Principles CH3NH3PbI3 Electronic Properties
摘要: 我们采用基于密度泛函理论的第一性原理方法研究了钙钛矿CH3NH3PbI3材料的结构和电子性质。计算表明optB86b + vdWDF交换关联泛函给出的晶格结构和实验结果符合的很好。同时,能带结构分析表明材料是直接带隙材料,带隙宽度为1.68 eV与实验结果相符。态密度分析表明,价带顶和导带底分别是由I 5p轨道和Pb 6p轨道组成,而有机分子CH3NH3对于价带顶和导带底的贡献较小。这些结果说明,对于钙钛矿CH3NH3PbI3类材料,包含范德瓦尔斯作用的vdW-DF泛函能够更好的描述体系的物理性质。
Abstract: Using first-principle calculations based on density functional theory (DFT), we have studied the structural and electronic properties of perovskite-type CH3NH3PbI3. The structural properties cal- culated by DFT with the optB86b + vdWDF exchange-correlation functional are in good agreement with experimental results. The band structures analysis shows that perovskite-type CH3NH3PbI3 is a direct band gap material. In addition, the calculated band gap, ~1.68 eV, is close to experimental results. The analysis of partial density of states shows that the top of valence band is mainly composed of I 5p states. And, the main components of the conduction bands bottom are Pb 6p states. In contrast, the organic CH3NH3 makes little contribution to the top valence and bottom conduction bands. Thus, consideration of the vdW interactions is important for theoretical studies of perovskite-type CH3NH3PbI3 material.
文章引用:刘洪飞, 张众维. 钙钛矿CH3NH3PbI3结构和电子性质的第一性原理研究[J]. 应用物理, 2016, 6(12): 281-287. http://dx.doi.org/10.12677/APP.2016.612035

参考文献

[1] Tan, S., Zhai, J., Wan, M., Meng, Q., Li, Y., Jiang, L. and Zhu, D. (2004) Influence of Small Molecules in Conducting Polyaniline on the Photovoltaic Properties of Solid-State Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B, 108, 18693-18697.
https://doi.org/10.1021/jp046574y
[2] Cervini, R., Cheng, Y. and Simon, G. (2004) Solid-State Ru-Dye Solar Cells Using Polypyr Role as a Hole Conductor. Journal of Physics D: Applied Physics, 37, 13.
https://doi.org/10.1088/0022-3727/37/1/004
[3] Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T. (2009) Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131, 6050-6051.
https://doi.org/10.1021/ja809598r
[4] Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N. and Snaith, H.J. (2012) Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 338, 643-647.
https://doi.org/10.1126/science.1228604
[5] Heo, J.H., Im, S.H., Noh, J.H., Mandal, T.N., Lim, C.S., Chang, J.A., Lee, Y.H., Kim, H.J., Sarkar, A. and Gratzel, M. (2013) Efficient Inorganic-Organic Hybrid Heterojunction Solar Cells Containing Perovskite Compound and Polymeric Hole Conductors. Nature Photonics, 7, 486-491.
https://doi.org/10.1038/nphoton.2013.80
[6] Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N. and Seok, S.I. (2013) Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells. Nano Letters, 13, 1764-1769.
https://doi.org/10.1021/nl400349b
[7] Stoumpos, C.C., Malliakas, C.D. and Kanatzidis, M.G. (2013) Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorganic Chemistry, 52, 9019-9038.
https://doi.org/10.1021/ic401215x
[8] Im, J.H., Lee, C.R., Lee, J.W., Park, S.W. and Park, N.G. (2011) 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. Nanoscale, 3, 4088-4093.
https://doi.org/10.1039/c1nr10867k
[9] Kim, H.S., Lee, C.R., Im, J.H., Lee, K.B., Moehl, T., Marchioro, A., Moon, S.J., Baker, R.H., Yum, J.H., Moser, J.E., Grätzel, M. and Park, N.G. (2012) Lead Iodide Perovskite Sensitized All-Aolid-Statesubmicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports, 2, 591.
https://doi.org/10.1038/srep00591
[10] Burschka, J., Pellet, N., Moon, S.J., Baker, R.H., Gao, P., Nazeeruddin, M.K. and Grätzel, M. (2013) Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature, 499, 316-319.
https://doi.org/10.1038/nature12340
[11] Liu, M.Z., Johnston, M.B. and Snaith, H.J. (2013) Efficient Planar Heterojunction Perovskite Solar Cells by vaPour Deposition. Nature, 501, 395-398.
https://doi.org/10.1038/nature12509
[12] Zhou, H.P., Chen, Q., Li, G., Luo, S., Song, T.B., Duan, H.S., Hong, Z.R., You, J.B., Liu, Y.S. and Yang, Y. (2014) Interface Engineering of Highly Efficient Perovskite Solar Cells. Science, 345, 542-546.
https://doi.org/10.1126/science.1254050
[13] Kim, H.S., Im, S.H. and Park, N.G. (2014) Organolead Halide Perovskite: New Horizons in Solar Cell Research. The Journal of Physical Chemistry C, 118, 5615-5625.
https://doi.org/10.1021/jp409025w
[14] Shi, J.J., Dong, J., Lv, S.T., Xu, Y.Z., Zhu, L.F., Xiao, J.Y., Xu, X., Wu, H.J., Li, D.M., Luo, Y.H. and Meng, Q.B. (2014) Hole-Conductor-Free Perovskite Organic Lead Iodide Heterojunction Thin-Film Solar Cells: High Efficiency and Junction Property. Applied Physics Letters, 104, Article ID: 063901.
https://doi.org/10.1063/1.4864638
[15] Green, M.A., Baillie, A.H. and Snaith, H.J. (2014) Perovskite Solar Cells with a Planar Heterojunction Structure Prepared Using Room-Temperature Solution Processing Techniques. Nature Photonics, 8, 133-138.
[16] Kresse, G. and Hafner, J. (1993) Ab Initio Molecular Dynamics for Liquid Metals. Physical Review B, 47, 558-561.
https://doi.org/10.1103/PhysRevB.47.558
[17] Kresse, G. and Hafner, J. (1994) Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal-Amorphous-Semi- conductor Transition in Germanium. Physical Review B, 49, 14251-14269.
https://doi.org/10.1103/PhysRevB.49.14251
[18] Kresse, G. and Furthmuller, J. (1996) Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Science, 6, 15-50.
https://doi.org/10.1016/0927-0256(96)00008-0
[19] Kresse, G. and Joubert, D. (1999) From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Physical Review B, 59, 1758-1775.
https://doi.org/10.1103/PhysRevB.59.1758
[20] Wang, Y., Gould, T., Dobson, J.F., Zhang, H.M., Yang, H.G., Yao, X.D. and Zhao, H.J. (2014) Density Functional Theory Analysis of Structural and Electronic Properties of Orthorhombic Perovskite CH3NH3PbI3. Physical Chemistry Chemical Physics, 16, 1424-1429.
https://doi.org/10.1039/C3CP54479F
[21] Dion, M., Rydberg, H., Schroder, E., Langreth, D.C. and Lundqvist, B.I. (2004) Van der Waals Density Functional for General Geometries. Physical Review Letters, 92, Article ID: 246401.
https://doi.org/10.1103/physrevlett.92.246401
[22] Klimes, J., Bowler, D.R. and Michaelides, A. (2011) Van der Waals Density Functionals Applied to Solids. Physical Review B, 83, Article ID: 195131.
https://doi.org/10.1103/physrevb.83.195131
[23] Baikie, T., Fang, Y.N., Kadro, J.M., Schreyer, M., Wei, F.X., Mhaisalkar, S.G., Graetzel, M. and White, T.J. (2013) Synthesis and Crystal Chemistry of the hybrid Perovskite (CH3NH3)PbI3 for Solid-State Sensitised Solar Cell Applications. Journal of Materials Chemistry A, 1, 5628-5641.
https://doi.org/10.1039/c3ta10518k
[24] Feng, J. and Xiao, B. (2014) Crystal Structures, Optical Properties, and Effective Mass Tensors of CH3NH3PbX3 (X = I and Br) Phases Predicted from HSE06. The Journal of Physical Chemistry Letters, 5, 1278-1282.
https://doi.org/10.1021/jz500480m
[25] Papavassiliou, G.C. and Koutselas, I.B. (1995) Structural, Optical and Related Properties of Some Natural Three- and Lower-Dimensional Semiconductor Systems. Synthetic Metals, 71, 1713-1714.
https://doi.org/10.1016/0379-6779(94)03017-Z
[26] Ishihara, T. (1994) Optical Properties of PbI-Based Perovskite Structures. Journal of Luminescence, 60-61, 269-274.
https://doi.org/10.1016/0022-2313(94)90145-7
[27] Mosconi, E., Amat, A., Nazeeruddin, M.K., Gratzel, M. and De Angelis, F. (2013) First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. The Journal of Physical Chemistry C, 117, 13902- 13913.
https://doi.org/10.1021/jp4048659
[28] Lv, H.Z., Gao, H.W., Yang, Y. and Liu, L.K. (2011) Density Functional Theory (DFT) Investigation on the Structure and Electronic Properties of the Cubic Perovskite PbTiO3. Applied Catalysis A: General, 404, 54-58.
https://doi.org/10.1016/j.apcata.2011.07.010
[29] Pena, M.A. and Fierro, J.L.G. (2001) Chemical Structures and Performance of Perovskite Oxides. Chemical Reviews, 101, 1981-2018.
https://doi.org/10.1021/cr980129f
[30] Xing, G., Mathews, N., Sun, S., Lim, S.S., Lam, Y.M., Gratzel, M., Mhaisalkar, S. and Sum, T.C. (2013) Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science, 342, 344-347.
https://doi.org/10.1126/science.1243167