应用物理  >> Vol. 1 No. 2 (July 2011)

用改进的Kirchhoff近似方法对非均匀介质中缺陷形状重构
Shape Reconstruction of Flaws Using Modified KIRCHHOFF Approximation in Inhomogeneous Materia

DOI: 10.12677/app.2011.12009, PDF, HTML,  被引量 下载: 2,828  浏览: 10,912  国家自然科学基金支持

作者: 郑钢丰, 吴斌, 何存富

关键词: 形状重构Kirchhoff近似Kramers-Kronig无损检测
Shape Reconstruction; Kirchhoff Approximation; Kramers-Kronig; NDE

摘要: 近年来关于波在非均匀介质中传播特性方面的研究引起了各领域专家、学者的广泛关注。本文首先导出了非均匀介质中散射体散射截面??P?的表达式,对含不相关散射体及含相关散射体的非均匀介质中的Kramers-Kronig关系的相值进行量化,并且以变化的频率为桥梁,引入相速度构造非均匀介质中的二维Kirchhoff近似公式,最后通过实验的方法获取数据应用此公式对非均匀介质中的缺陷形状进行重构,重构的结果反映了理论公式的可行性。
Abstract: In recent years, research on propagation characteristic of wave in inhomogeneous media attracts much attention among experts and scholars in various domains. First, mathematic expression for scattering cross section ??P? in inhomogeneous is deduced. Then, quantization of Kramers-Kronig relation in inho-mogeneous medium containing scatterers is given. Based on the frequency change, the phase velocity due to the inhomogeneous material is introduced into two-dimensional Kirchhoff approximation formula. Finally, this paper reconstructs the flaw shapes in inhomogeneous medium using backscattered ultrasound through experimental method and the results verify the feasibility of flaw scattering theory.

文章引用: 郑钢丰, 吴斌, 何存富. 用改进的Kirchhoff近似方法对非均匀介质中缺陷形状重构[J]. 应用物理, 2011, 1(2): 60-63. http://dx.doi.org/10.12677/app.2011.12009

参考文献

[1] G. Alessandrini, A. Bilotta, G. Formica, et al. Numerical size es-timates of inclusions in elastic bodies. Inverse Problems, 2005, 21(1): 133-151.
[2] J. E. Michaels, T. E. Michaelsa. Guided wave signal processing and image fusion for in situ damage lo-calization in plates. Wave Motion, 2007, 44(6): 482-492.
[3] M. Kitahara, K. Nakahata, and S. Hirose. Elasto-dynamic inversion for shape reconstruction and type classifica-tion of flaws. Wave Motion, 2002, 36(4): 443-455.
[4] J. L. Rose. Ultrasonic waves in solid media. Cambridge University Press. 1999.
[5] M. Kitahara, T. Takahashi. Calculation and measurement of ultrasonic attenuation for distributed cracks in a solid. Review of Quantitative Nondestructive Evaluation, 2003, 657(1): 1156-1163.
[6] 郑钢丰. 结构中的逆散射理论与缺陷成像[D]. 北京工业大学, 2008.
[7] G. F. Zheng, B. Wu, and C. F. He. Shape reconstruction of three dimensional flaw from backscattering data. Measurement, 2007, 40(9-10): 854-859.