AAS  >> Vol. 5 No. 1 (January 2017)

    SDSS J101108 + 553407光谱中Nv双线吸收系统光变分析
    Light Variation Analysis of Nv Double Line Absorption System in the SDSS J101108 + 553407 Spectrum

  • 全文下载: PDF(900KB) HTML   XML   PP.8-14   DOI: 10.12677/AAS.2017.51002  
  • 下载量: 1,001  浏览量: 1,797   国家自然科学基金支持

作者:  

潘彩娟,姚 敏,陆美美,黄红艳,姚知考,农卫警:百色学院材料科学与工程学院,广西 百色;
黄伟荣:广州大学天体物理中心,广东 广州

关键词:
SDSS J101108 + 553407光谱吸收线光变SDSS J101108 + 553407 Absorption Line Variation

摘要:

利用BOSS第二次释放的数据,我们对SDSS J101108+553407的光谱进行系统研究,在观测坐标系5200 Å~8700 Å范围内,可以证认出吸收线红移为3.2983,3.3431,3.3542,3.3583的4个窄吸收系统,我们发现Nvλλ1238、1242双线吸收系统有明显的光变现象,其等值宽度平均增强约166%。

Based on the second released data of Boss, we begin with a system research on the SDSS J101108 + 553407 spectrum. Within the observable scope of the coordinate system 5200 Å~8700 Å, we may recognize four narrow absorption systems with the red shifts of absorption lines 3.2983, 3.3431, 3.3542 and 3.3583 and find an obvious light variation phenomenon on the double line absorption system of Nvλλ1238, 1242, and its equivalent width enhances 166% averagely.

文章引用:
潘彩娟, 黄伟荣, 姚敏, 陆美美, 黄红艳, 姚知考, 农卫警. SDSS J101108 + 553407光谱中Nv双线吸收系统光变分析[J]. 天文与天体物理, 2017, 5(1): 8-14. http://dx.doi.org/10.12677/AAS.2017.51002

参考文献

[1] Pérez-Ràfols I, Miralda-Escudé J, Lundgren B, et al. MNRAS, 2015, 447: 2784-2802 https://doi.org/10.1093/mnras/stu2645
[2] Proga, D. ApJ, 2000, 538: 684-690 https://doi.org/10.1086/309154
[3] Bergeron J. A&A, 1986, 155: L8-L11
[4] Ganguly R, Bond N A, Charlton J C, et al. ApJ, 2001, 549: 133-154 https://doi.org/10.1086/319082
[5] Murray N, Chiang J, Grossman S A, et al. ApJ, 1995, 451: 498 https://doi.org/10.1086/176238
[6] Qin Y P, Liu H T, Liang E W, et al. MNRAS, 2004, 351: 1319-1326 https://doi.org/10.1111/j.1365-2966.2004.07875.x
[7] Gupta A, Mathur S, Krongold Y, et al. ApJ, 2013, 768: 141-152
[8] Gupta A, Mathur S, Krongold Y, et al. ApJ, 2013,772:66-73
[9] Tombesi F, Cappi M, Reeves J N, et al. ApJ, 2011, 742: 44-64
[10] Wise J H, Eracleous M, Charlton J C, et al. ApJ, 2004, 613: 129-150 https://doi.org/10.1086/422974
[11] Weymann R J, Morris S L, Foltz C B, et al. ApJ, 1991, 373: 23 https://doi.org/10.1086/170020
[12] Misawa T, Charlton J C, Eracleous M. ApJ, 2014, 792: 77
[13] Capellupo D M, Hamann F, Shields J C, et al. MNRAS, 2013, 429: 1872 https://doi.org/10.1093/mnras/sts427
[14] He Z C, Bian W H, Jiang X L, et al. MNRAS, 2014, 443: 2532 https://doi.org/10.1093/mnras/stu1096
[15] Filiz Ak N, Brandt W N, Hall P B, et al. ApJ, 2013, 777: 168
[16] Wang T, Yang C, Wang H, et al. ApJ, 2015, 814: 150
[17] Hacker T L, Brunner R J, Lundgren B F, et al. MNRAS, 2013, 434: 163 https://doi.org/10.1093/mnras/stt1022
[18] Chen Z F, Qin Y P. ApJ, 2013, 777: 56
[19] 潘彩娟, 陈志福, 等. 天文研究与技术, 2013, 10: 7
[20] York D G, Adelman J, Anderson Jr J E, et al. AJ, 2000, 120: 1579 https://doi.org/10.1086/301513
[21] Eisenstein D J, Weinberg D H, Agol E, et al. AJ, 2011, 142: 72
[22] Pâris I, Petitjean P, Auboug É, et al. A&A, 2012, 548: A66
[23] Nestor D B, Turnshek D A, Rao S M. ApJ, 2005, 628: 637 https://doi.org/10.1086/427547
[24] Chen Z F, Li M S, Huang W R, et al. MNRAS. 2013, 434: 3275 https://doi.org/10.1093/mnras/stt1247
[25] 黄克谅. 类星体与活动星系核. 北京: 中国科学技术出版社, 2005
[26] Misawa T, Charlton J C, Eracleous M, et al. ApJS, 2007, 171: 1 https://doi.org/10.1086/513713
[27] Rodríguez H P, Hamann F, Hall P. MNRAS, 2011, 411: 247 https://doi.org/10.1111/j.1365-2966.2010.17677.x