肾脏缺血再灌注损伤机制及其影响因素的研究进展
The Research Progress of Kidney Ischemia-Reperfusion Injury on Mechanism and Its Influencing Factors
DOI: 10.12677/JPS.2016.43003, PDF, HTML, XML, 下载: 2,604  浏览: 6,380 
作者: 王翔宇, 马云波*:聊城市人民医院泌尿外科,山东 聊城
关键词: 缺血再灌注损伤肾损伤自由基钙超载炎症Ischemia-Reperfusion Injury Kidney Injury Free Radical Ca2+ Overload Inflammation
摘要: 缺血再灌注损伤(IRI)是指在缺血的基础上恢复血流后组织损伤反而加重的现象。肾脏缺血再灌注损伤引起的急性肾功能损伤(AKI)在临床上具有很高的死亡率。其机制非常复杂,涉及多种因素共同作用,且目前对于IRI的具体作用机制尚不十分明确,目前认为与缺血再灌注后的炎症反应、氧化应激、细胞内钙超载、肾素-血管紧张素激活、微循环障碍等有关。更好的理解肾缺血再灌注损伤的机制才能找到有效的防治措施。这篇综述我们总结了缺血再灌注损伤可能的机制及防治措施。
Abstract: Ischemia-reperfusion injury (IRI) occurs when the blood flow to the particular organ is ob-structed, followed by the restoration of blood to the ischemic organ. In the kidney, IRI contributes to pathological conditions called acute kidney injury (AKI) that is a clinical syndrome with rapid kidney dysfunction and high mortality rates. Although the pathophysiology of IRI is very complicated and is not completely understood, several important mechanisms resulting in kidney failure have been mentioned. IRI usually is associated with an inflammatory reaction, oxidative stress, intracellular Ca2+ overload, renin-angiotensin activation and microcirculation disturbance. Better understanding of the cellular pathophysiological mechanisms underlying kidney injury will hope- fully result in the design of more targeted therapies to prevent and treat the injury. In this review, we summarize some important potential mechanisms and therapeutic approaches in renal IRI.
文章引用:王翔宇, 马云波. 肾脏缺血再灌注损伤机制及其影响因素的研究进展[J]. 生理学研究, 2016, 4(3): 19-29. http://dx.doi.org/10.12677/JPS.2016.43003

参考文献

[1] Sewell, W.H., Koth, D.R. and Huggins, C.E. (1955) Ventricular Fibrillation in Dogs after Sudden Return of Flow to the Coronary Artery. Surgery, 38, 1050-1053.
[2] Menke, J., Sollinger, D., Schamberger, B., Heemann, U. and Lutz, J. (2014) The Effect of Ischemia/Reperfusion on the Kidney Graft. Current Opinion in Organ Transplantation, 19, 395-400. https://doi.org/10.1097/MOT.0000000000000090
[3] Kosieradzki, M. and Rowinski, W. (2008) Ischemia/Reperfusion Injury in Kidney Transplantation: Mechanisms and Prevention. Transplantation Proceedings, 40, 3279-3288. https://doi.org/10.1016/j.transproceed.2008.10.004
[4] Roberts, B.N. and Christini, D.J. (2011) The Inhibition Does Not Improve Na(+) or Ca(2+) Overload during Reperfusion: Using Modeling to Illuminate the Mechanisms Underlying a Therapeutic Failure. PLoS Computational Biology, 7, e1002241. https://doi.org/10.1371/journal.pcbi.1002241
[5] Schumacher, C.A., Baartscheer, A., Coronel, R. and Fiolet, J.W. (1998) Energy-Dependent Transport of Calcium to the Extracellular Space during Acute Ischemia of the Rat Heart. Journal of Molecular and Cellular Cardiology, 30, 1631- 1642. https://doi.org/10.1006/jmcc.1998.0728
[6] Droge, W. (2002) Free Radicals in the Physiological Control of Cell Function. Physiological Reviews, 82, 47-95. https://doi.org/10.1152/physrev.00018.2001
[7] Kalogeris, T., Baines, C.P., Krenz, M. and Korthuis, R.J. (2012) Cell Biology of Ischemia/Reperfusion Injury. International Review of Cell and Molecular Biology, 298, 229-317. https://doi.org/10.1016/B978-0-12-394309-5.00006-7
[8] Chen, Y.R. and Zweier, J.L. (2014) Cardiac Mitochondria and Reactive Oxygen Species Generation. Circulation Research, 114, 524-537. https://doi.org/10.1161/CIRCRESAHA.114.300559
[9] Raedschelders, K., Ansley, D.M. and Chen, D.D. (2012) The Cellular and Molecular Origin of Reactive Oxygen Species Generation during Myocardial Ischemia and Reperfusion. Pharmacology & Therapeutics, 133, 230-255. https://doi.org/10.1016/j.pharmthera.2011.11.004
[10] Roe, N.D. and Ren, J. (2012) Nitric Oxide Synthase Uncoupling: A Therapeutic Target in Cardiovascular Diseases. Vascular Pharmacology, 57, 168-172. https://doi.org/10.1016/j.vph.2012.02.004
[11] Seifi, B., Kadkhodaee, M., Bakhshi, E., Ranjbaran, M., Ahghari, P. and Rastegar, T. (2014) Enhancement of Renal Oxidative Stress by Injection of Angiotensin Ii into the Paraventricular Nucleus in Renal Ischemia-Reperfusion Injury. Canadian Journal of Physiology and Pharmacology, 92, 752-757. https://doi.org/10.1139/cjpp-2014-0108
[12] Robinette, J.B. and Conger, J.D. (1990) Angiotensin and Thromboxane in the Enhanced Renal Adrenergic Nerve Sensitivity of Acute Renal Failure. Journal of Clinical Investigation, 86, 1532-1539. https://doi.org/10.1172/JCI114872
[13] Kim, S.M., Kim, Y.G., Jeong, K.H., Lee, S.H., Lee, T.W., Ihm, C. and Moon, J. (2012) Angiotensin Ii-Induced Mitochondrial Nox4 Is a Major Endogenous Source of Oxidative Stress in Kidney Tubular Cells. PLoS ONE, 7, e39739. https://doi.org/10.1371/journal.pone.0039739
[14] Zou, X., Yang, L. and Yao, S. (2012) Endoplasmic Reticulum Stress and C/Ebp Homologous Protein-Induced Bax Translocation Are Involved in Angiotensin Ii-Induced Apoptosis in Cultured Neonatal Rat Cardiomyocytes. Experimental Biology and Medicine, 237, 1341-1349. https://doi.org/10.1258/ebm.2012.012041
[15] Rajagopalan, S., Kurz, S., Munzel, T., Tarpey, M., Freeman, B.A., Griendling, K.K. and Harrison, D.G. (1996) Angiotensin Ii-Mediated Hypertension in the Rat Increases Vascular Superoxide Production Via Membrane Nadh/Nadph Oxidase Activation. Contribution to Alterations of Vasomotor Tone. Journal of Clinical Investigation, 97, 1916-1923. https://doi.org/10.1172/JCI118623
[16] Gobe, G., Zhang, X.J., Willgoss, D.A., Schoch, E., Hogg, N.A. and Endre, Z. (2000) Relationship between Expression of Bcl-2 Genes and Growth Factors in Ischemic Acute Renal Failure in the Rat. Journal of the American Society of Nephrology, 11, 454-467.
[17] Carvajal, G., Rodriguez-Vita, J., Rodrigues-Diez, R., Sanchez-Lopez, E., Ruperez, M., Cartier, C., Esteban, V., Ortiz, A., Egido, J., Mezzano, S.A. and Ruiz-Ortega, M. (2008) Angiotensin Ii Activates the Smad Pathway during Epithelial Mesenchymal Transdifferentiation. Kidney International, 74, 585-595. https://doi.org/10.1038/ki.2008.213
[18] Halestrap, A.P. (2010) A Pore Way to Die: The Role of Mitochondria in Reperfusion Injury and Cardioprotection. Biochemical Society Transactions, 38, 841-860. https://doi.org/10.1042/BST0380841
[19] Smith, C.C. and Yellon, D.M. (2011) Necroptosis, Necrostatins and Tissue Injury. Journal of Cellular and Molecular Medicine, 15, 1797-1806. https://doi.org/10.1111/j.1582-4934.2011.01341.x
[20] Whelan, R.S., Kaplinskiy, V. and Kitsis, R.N. (2010) Cell Death in the Pathogenesis of Heart Disease: Mechanisms and Significance. Annual Review of Physiology, 72, 19-44. https://doi.org/10.1146/annurev.physiol.010908.163111
[21] Broughton, B.R., Reutens, D.C. and Sobey, C.G. (2009) Apoptotic Mechanisms after Cerebral Ischemia. Stroke, 40, e331-e339. https://doi.org/10.1161/strokeaha.108.531632
[22] Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E.S., Baehrecke, E.H., Blagosklonny, M.V., El-Deiry, W.S., Golstein, P., Green, D.R., Hengartner, M., Knight, R.A., Kumar, S., Lipton, S.A., Malorni, W., Nunez, G., Peter, M.E., Tschopp, J., Yuan, J., Piacentini, M., Zhivotovsky, B., Melino, G. and Death Nomenclature Committee on Cell (2009) Classification of Cell Death: Recommendations of the Nomenclature Committee on Cell Death. Cell Death & Differentiation, 16, 3-11. https://doi.org/10.1038/cdd.2008.150
[23] Croall, D.E. and Ersfeld, K. (2007) The Calpains: Modular Designs and Functional Diversity. Genome Biology, 8, 218. https://doi.org/10.1186/gb-2007-8-6-218
[24] Kvietys, P.R. and Granger, D.N. (2012) Role of Reactive Oxygen and Nitrogen Species in the Vascular Responses to Inflammation. Free Radical Biology and Medicine, 52, 556-592. https://doi.org/10.1016/j.freeradbiomed.2011.11.002
[25] Furuichi, K., Wada, T., Yokoyama, H. and Kobayashi, K.I. (2002) Role of Cytokines and Chemokines in Renal Ischemia-Reperfusion Injury. Drug News & Perspectives, 15, 477-482. https://doi.org/10.1358/dnp.2002.15.8.840067
[26] Leventhal, J.S. and Schroppel, B. (2012) Toll-Like Receptors in Transplantation: Sensing and Reacting to Injury. Kidney International, 81, 826-832. https://doi.org/10.1038/ki.2011.498
[27] Foreman, K.E., Vaporciyan, A.A., Bonish, B.K., Jones, M.L., Johnson, K.J., Glovsky, M.M., Eddy, S.M. and Ward, P.A. (1994) C5a-Induced Expression of P-Selectin in Endothelial Cells. Journal of Clinical Investigation, 94, 1147- 1155. https://doi.org/10.1172/JCI117430
[28] Hattori, R., Hamilton, K.K., McEver, R.P. and Sims, P.J. (1989) Complement Proteins C5b-9 Induce Secretion of High Molecular Weight Multimers of Endothelial Von Willebrand Factor and Translocation of Granule Membrane Protein Gmp-140 to the Cell Surface. Journal of Biological Chemistry, 264, 9053-9060.
[29] Malek, M. and Nematbakhsh, M. (2015) Renal Ischemia/Reperfusion Injury; from Pathophysiology to Treatment. Journal of Renal Injury Prevention, 4, 20-27.
[30] McDougal, W.S. (1988) Renal Perfusion/Reperfusion Injuries. Journal of Urology, 140, 1325-1330.
[31] Humphreys, M.R., Castle, E.P., Lohse, C.M., Sebo, T.J., Leslie, K.O. and Andrews, P.E. (2009) Renal Ischemia Time in Laparoscopic Surgery: An Experimental Study in a Porcine Model. International Journal of Urology, 16, 105-109. https://doi.org/10.1111/j.1442-2042.2008.02173.x
[32] Yang, N., Luo, M., Li, R., Huang, Y., Zhang, R., Wu, Q., Wang, F., Li, Y. and Yu, X. (2008) Blockage of Jak/Stat Signalling Attenuates Renal Ischaemia-Reperfusion Injury in Rat. Nephrology Dialysis Transplantation, 23, 91-100. https://doi.org/10.1093/ndt/gfm509
[33] Gu, J., Sun, P., Zhao, H., Watts, H.R., Sanders, R.D., Terrando, N., Xia, P., Maze, M. and Ma, D. (2011) Dexmedetomidine Provides Renoprotection against Ischemia-Reperfusion Injury in Mice. Critical Care, 15, R153. https://doi.org/10.1186/cc10283
[34] Naujokat, C., Berges, C., Fuchs, D., Sadeghi, M., Opelz, G. and Daniel, V. (2007) Antithymocyte Globulins Suppress Dendritic Cell Function by Multiple Mechanisms. Transplantation, 83, 485-497. https://doi.org/10.1097/01.tp.0000251975.81281.22
[35] Beiras-Fernandez, A., Chappell, D., Hammer, C., Beiras, A., Reichart, B. and Thein, E. (2009) Impact of Polyclonal Anti-Thymocyte Globulins on the Expression of Adhesion and Inflammation Molecules after Ischemia-Reperfusion Injury. Transplant Immunology, 20, 224-228. https://doi.org/10.1016/j.trim.2008.11.004
[36] Takada, M., Nadeau, K.C., Shaw, G.D., Marquette, K.A. and Tilney, N.L. (1997) The Cytokine-Adhesion Molecule Cascade in Ischemia/Reperfusion Injury of the Rat Kidney. Inhibition by a Soluble P-Selectin Ligand. Journal of Clinical Investigation, 99, 2682-2690. https://doi.org/10.1172/JCI119457
[37] Sener, G., Sehirli, O., Velioglu-Ogunc, A., Cetinel, S., Gedik, N., Caner, M., Sakarcan, A. and Yegen, B.C. (2006) Montelukast Protects against Renal Ischemia/Reperfusion Injury in Rats. Pharmacological Research, 54, 65-71. https://doi.org/10.1016/j.phrs.2006.02.007
[38] Hagar, H.H. and Abd El Tawab, R. (2012) Cysteinyl Leukotriene Receptor Antagonism Alleviates Renal Injury Induced by Ischemia-Reperfusion in Rats. Journal of Surgical Research, 178, e25-e34. https://doi.org/10.1016/j.jss.2012.02.022
[39] Sadis, C., Teske, G., Stokman, G., Kubjak, C., Claessen, N., Moore, F., Loi, P., Diallo, B., Barvais, L., Goldman, M., Florquin, S. and Le Moine, A. (2007) Nicotine Protects Kidney from Renal Ischemia/Reperfusion Injury through the Cholinergic Anti-Inflammatory Pathway. PLoS ONE, 2, e469. https://doi.org/10.1371/journal.pone.0000469
[40] Arslan, F., Houtgraaf, J.H., Keogh, B., Kazemi, K., de Jong, R., McCormack, W.J., O’Neill, L.A., McGuirk, P., Timmers, L., Smeets, M.B., Akeroyd, L., Reilly, M., Pasterkamp, G. and de Kleijn, D.P. (2012) Treatment with Opn-305, a Humanized Anti-Toll-Like Receptor-2 Antibody, Reduces Myocardial Ischemia/Reperfusion Injury in Pigs. Circulation: Cardiovascular Interventions, 5, 279-287. https://doi.org/10.1161/circinterventions.111.967596
[41] Salvadori, M., Rosso, G. and Bertoni, E. (2015) Update on Ischemia-Reperfusion Injury in Kidney Transplantation: Pathogenesis and Treatment. World Journal of Transplantation, 5, 52-67.
[42] Kondo, M., Tahara, A., Hayashi, K., Abe, M., Inami, H., Ishikawa, T., Ito, H. and Tomura, Y. (2014) Renoprotective Effects of Novel Interleukin-1 Receptor-Associated Kinase 4 Inhibitor As2444697 through Anti-Inflammatory Action in 5/6 Nephrectomized Rats. Naunyn-Schmiedebergs Archives of Pharmacology, 387, 909-919. https://doi.org/10.1007/s00210-014-1023-z
[43] Rivas, M. N., Koh, Y.T., Chen, A., Nguyen, A., Lee, Y.H., Lawson, G. and Chatila, T.A. (2012) Myd88 Is Critically Involved in Immune Tolerance Breakdown at Environmental Interfaces of Foxp3-Deficient Mice. Journal of Clinical Investigation, 122, 1933-1947. https://doi.org/10.1172/JCI40591
[44] Arumugam, T.V., Shiels, I.A., Strachan, A.J., Abbenante, G., Fairlie, D.P. and Taylor, S.M. (2003) A Small Molecule C5a Receptor Antagonist Protects Kidneys from Ischemia/Reperfusion Injury in Rats. Kidney International, 63, 134-142. https://doi.org/10.1046/j.1523-1755.2003.00737.x
[45] Zheng, X., Zhang, X., Sun, H., Feng, B., Li, M., Chen, G., Vladau, C., Chen, D., Suzuki, M., Min, L., Liu, W., Zhong, R., Garcia, B., Jevnikar, A. and Min, W.P. (2006) Protection of Renal Ischemia Injury Using Combination Gene Silencing of Complement 3 and Caspase 3 Genes. Transplantation, 82, 1781-1786. https://doi.org/10.1097/01.tp.0000250769.86623.a3
[46] Castellano, G., Melchiorre, R., Loverre, A., Ditonno, P., Montinaro, V., Rossini, M., Divella, C., Battaglia, M., Lucarelli, G., Annunziata, G., Palazzo, S., Selvaggi, F.P., Staffieri, F., Crovace, A., Daha, M.R., Mannesse, M., van Wetering, S., Paolo Schena, F. and Grandaliano, G. (2010) Therapeutic Targeting of Classical and Lectin Pathways of Complement Protects from Ischemia-Reperfusion-Induced Renal Damage. American Journal of Pathology, 176, 1648-1659. https://doi.org/10.2353/ajpath.2010.090276
[47] Settergren, M., Bohm, F., Malmstrom, R.E., Channon, K.M. and Pernow, J. (2009) L-Arginine and Tetrahydrobiopterin Protects against Ische-mia/Reperfusion-Induced Endothelial Dysfunction in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease. Atherosclerosis, 204, 73-78. https://doi.org/10.1016/j.atherosclerosis.2008.08.034
[48] Land, W., Schneeberger, H., Schleibner, S., Illner, W.D., Abendroth, D., Rutili, G., Arfors, K.E. and Messmer, K. (1994) The Beneficial Effect of Human Recombinant Superoxide Dismutase on Acute and Chronic Rejection Events in Recipients of Cadaveric Renal Transplants. Transplantation, 57, 211-217. https://doi.org/10.1097/00007890-199401001-00010
[49] Sahna, E., Parlakpinar, H., Ozturk, F., Cigremis, Y. and Acet, A. (2003) The Protective Effects of Physiological and Pharmacological Concentrations of Melatonin on Renal Ische-mia-Reperfusion Injury in Rats. Urological Research, 31, 188-193. https://doi.org/10.1007/s00240-003-0314-5
[50] Laflamme, K.A, Wu, L., Foucart, S. and de Champlain, J. (1998) Impaired Basal Sympathetic Tone and Alpha1-Adrenergic Responsiveness in Association with the Hypotensive Effect of Melatonin in Spontaneously Hypertensive Rats. American Journal of Hypertension, 11, 219-229. https://doi.org/10.1016/S0895-7061(97)00401-9
[51] Yang, S., Chou, W.P. and Pei, L. (2013) Effects of Propofol on Renal Ischemia/Reperfusion Injury in Rats. Experimental and Therapeutic Medicine, 6, 1177-1183.
[52] Lang, J., Teng, X., Chumley, P., Crawford, J.H., Isbell, T.S., Chacko, B.K., Liu, Y., Jhala, N., Crowe, D.R., Smith, A.B., Cross, R.C., Eckhoff, D.E. and Patel, R.P. (2007) Inhaled No Accelerates Restoration of Liver Function in Adults Following Orthotopic Liver Transplantation. Journal of Clinical Investigation, 117, 2583-2591. https://doi.org/10.1172/JCI31892
[53] Kelpke, S.S., Chen, B., Bradley, K.M., Teng, X., Chumley, P., Brandon, A., Yancey, B., Moore, B., Head, H., Viera, L., Thompson, J.A., Crossman, D.K., Bray, M.S., Eckhoff, D.E., Agarwal, A. and Patel, R.P. (2012) Sodium Nitrite Protects against Kidney Injury Induced by Brain Death and Improves Post-Transplant Function. Kidney International, 82, 304-313. https://doi.org/10.1038/ki.2012.116
[54] Hill, P., Shukla, D., Tran, M.G., Aragones, J., Cook, H.T., Carmeliet, P. and Maxwell, P.H. (2008) Inhibition of Hypoxia Inducible Factor Hydroxylases Protects against Renal Ischemia-Reperfusion Injury. Journal of the American Society of Nephrology, 19, 39-46. https://doi.org/10.1681/ASN.2006090998
[55] Imamura, R., Moriyama, T., Isaka, Y., Namba, Y., Ichimaru, N., Takahara, S. and Okuyama, A. (2007) Erythropoietin Protects the Kidneys against Ischemia Reperfusion Injury by Activating Hypoxia Inducible Factor-1alpha. Transplantation, 83, 1371-1379. https://doi.org/10.1097/01.tp.0000264200.38926.70
[56] Wang, Z., Liu, Y., Han, Y., Guan, W., Kou, X., Fu, J., Yang, D., Ren, H., He, D., Zhou, L. and Zeng, C. (2013) Protective Effects of Aliskiren on Ischemia-Reperfusion-Induced Renal Injury in Rats. European Journal of Pharmacology, 718, 160-166. https://doi.org/10.1016/j.ejphar.2013.08.038
[57] Fouad, A.A., Al-Mulhim, A.S., Jresat, I. and Morsy, M.A. (2013) Protective Effects of Captopril in Diabetic Rats Exposed to Ischemia/Reperfusion Renal Injury. Journal of Pharmacy and Pharmacology, 65, 243-252. https://doi.org/10.1111/j.2042-7158.2012.01585.x
[58] Pazoki-Toroudi, H.R., Hesami, A., Vahidi, S., Sahebjam, F., Seifi, B. and Djahanguiri, B. (2003) The Preventive Effect of Captopril or Enalapril on Reperfusion Injury of the Kidney of Rats Is Independent of Angiotensin Ii At1 Receptors. Fundamental & Clinical Pharmacology, 17, 595-598. https://doi.org/10.1046/j.1472-8206.2003.00188.x
[59] Srisawat, U., Kongrat, S., Muanprasat, C. and Chatsudthipong, V. (2015) Losartan and Sodium Nitroprusside Effectively Protect against Renal Impairments after Ischemia and Reperfusion in Rats. Biological and Pharmaceutical Bulletin, 38, 753-762. https://doi.org/10.1248/bpb.b14-00860
[60] Seifi, B., Kadkhodaee, M., Bakhshi, E., Ranjbaran, M., Zahmatkesh, M., Sedaghat, Z., Ahghari, P. and Esmaeili, P. (2015) Angiotensin Ii in Paraventricular Nucleus Contributes to Sympathoexcitation in Renal Ischemia-Reperfusion Injury by At1 Receptor and Oxidative Stress. Journal of Surgical Research, 193, 361-367. https://doi.org/10.1016/j.jss.2014.06.042
[61] Murry, C.E., Jennings, R.B. and Reimer, K.A. (1986) Preconditioning with Ischemia: A Delay of Lethal Cell Injury in Ischemic Myocardium. Circulation, 74, 1124-1136. https://doi.org/10.1161/01.CIR.74.5.1124
[62] Przyklenk, K., Bauer, B., Ovize, M., Kloner, R.A. and Whittaker, P. (1993) Regional Ischemic “Preconditioning” Protects Remote Virgin Myocardium from Subsequent Sustained Coronary Occlusion. Circulation, 87, 893-899. https://doi.org/10.1161/01.CIR.87.3.893
[63] Hausenloy, D.J. and Yellon, D.M. (2006) Survival Kinases in Ischemic Preconditioning and Postconditioning. Cardiovascular Research, 70, 240-253. https://doi.org/10.1016/j.cardiores.2006.01.017
[64] Ding, Y.F., Zhang, M.M. and He, R.R. (2001) Role of Renal Nerve in Cardioprotection Provided by Renal Ischemic Preconditioning in Anesthetized Rabbits. Acta Physiologica Sinica, 53, 7-12.
[65] Zimmerman, R.F., Ezeanuna, P.U., Kane, J.C., Cleland, C.D., Kempananjappa, T.J., Lucas, F.L. and Kramer, R.S. (2011) Ischemic Preconditioning at a Remote Site Prevents Acute Kidney Injury in Patients Following Cardiac Surgery. Kidney International, 80, 861-867. https://doi.org/10.1038/ki.2011.156
[66] Thielmann, M., Kottenberg, E., Boengler, K., Raffelsieper, C., Neuhaeuser, M., Peters, J., Jakob, H. and Heusch, G. (2010) Remote Ischemic Preconditioning Reduces Myocardial Injury after Coronary Artery Bypass Surgery with Crystalloid Cardioplegic Arrest. Basic Research in Cardiology, 105, 657-664. https://doi.org/10.1007/s00395-010-0104-5
[67] Venugopal, V., Laing, C.M., Ludman, A., Yellon, D.M. and Hausenloy, D. (2010) Effect of Remote Ischemic Preconditioning on Acute Kidney Injury in Nondiabetic Patients Undergoing Coronary Artery Bypass Graft Surgery: A Secondary Analysis of 2 Small Randomized Trials. American Journal of Kidney Diseases, 56, 1043-1049. https://doi.org/10.1053/j.ajkd.2010.07.014
[68] Zarbock, A., Schmidt, C., Van Aken, H., Wempe, C., Martens, S., Zahn, P.K., Wolf, B., Goebel, U., Schwer, C. ., Rosenberger, P., Haeberle, H., Gorlich, D., Kellum, J.A., Meersch, M. and Ripc Investigators Renal (2015) Effect of Remote Ischemic Preconditioning on Kidney Injury among High-Risk Patients Undergoing Cardiac Surgery: A Randomized Clinical Trial. JAMA, 313, 2133-2141. https://doi.org/10.1001/jama.2015.4189
[69] Candilio, L., Malik, A., Ariti, C., Barnard, M., Di Salvo, C., Lawrence, D., Hayward, M., Yap, J., Roberts, N., Sheikh, A., Kolvekar, S., Hausenloy, D.J. and Yellon, D.M. (2015) Effect of Remote Ischaemic Preconditioning on Clinical Outcomes in Patients Undergoing Cardiac Bypass Surgery: A Randomised Controlled Clinical Trial. Heart, 101, 185-192. https://doi.org/10.1136/heartjnl-2014-306178
[70] Rahman, I.A., Mascaro, J.G., Steeds, R.P., Frenneaux, M.P., Nightingale, P., Gosling, P., Townsend, P., Townend, J.N., Green, D. and Bonser, R.S. (2010) Remote Ischemic Preconditioning in Human Coronary Artery Bypass Surgery: From Promise to Disappointment? Circulation, 122, S53-S59. https://doi.org/10.1161/CIRCULATIONAHA.109.926667
[71] Choi, Y.S., Shim, J.K., Kim, J.C., Kang, K.S., Seo, Y.H., Ahn, K.R. and Kwak, Y.L. (2011) Effect of Remote Ischemic Preconditioning on Renal Dysfunction after Complex Valvular Heart Surgery: A Randomized Controlled Trial. Journal of Thoracic and Cardiovascular Surgery, 142, 148-154. https://doi.org/10.1016/j.jtcvs.2010.11.018
[72] Young, P.J., Dalley, P., Garden, A., Horrocks, C., La Flamme, A., Mahon, B., Miller, J., Pilcher, J., Weatherall, M., Williams, J., Young, W. and Beasley, R. (2012) A Pilot Study Investigating the Effects of Remote Ischemic Preconditioning in High-Risk Cardiac Surgery Using a Randomised Controlled Double-Blind Protocol. Basic Research in Cardiology, 107, 256. https://doi.org/10.1007/s00395-012-0256-6
[73] Gallagher, S.M., Jones, D.A., Kapur, A., Wragg, A., Harwood, S.M., Mathur, R., Archbold, R.A., Uppal, R. and Yaqoob, M.M. (2015) Remote Ischemic Preconditioning Has a Neutral Effect on the Incidence of Kidney Injury after Coronary Artery Bypass Graft Surgery. Kidney International, 87, 473-481. https://doi.org/10.1038/ki.2014.259
[74] Wu, J., Feng, X., Huang, H., Shou, Z., Zhang, X., Wang, R., Chen, Y. and Chen, J. (2014) Remote Ischemic Conditioning Enhanced the Early Recovery of Renal Function in Recipients after Kidney Transplantation: A Randomized Controlled Trial. Journal of Surgical Research, 188, 303-308. https://doi.org/10.1016/j.jss.2013.06.058
[75] MacAllister, R., Clayton, T., Knight, R., Robertson, S., Nicholas, J., Motwani, M. and Veighey, K. (2015) Remote Preconditioning for Protection against Ischaemia-Reperfusion in Renal Transplantation (Repair): A Multicentre, Multinational, Double-Blind, Factorial Designed Randomised Controlled Trial. Efficacy and Mechanism Evaluation, Online.
[76] Wever, K.E., Menting, T.P., Rovers, M., van der Vliet, J.A., Rongen, G.A., Masereeuw, R., Ritskes-Hoitinga, M., Hooijmans, C.R. and Warle, M. (2012) Ischemic Preconditioning in the Animal Kidney, a Systematic Review and Meta-Analysis. PLoS ONE, 7, e32296. https://doi.org/10.1371/journal.pone.0032296
[77] Yang, Y., Lang, X.B., Zhang, P., Lv, R., Wang, Y.F. and Chen, J.H. (2014) Remote Ischemic Preconditioning for Prevention of Acute Kidney Injury: A Meta-Analysis of Randomized Controlled Trials. American Journal of Kidney Diseases, 64, 574-583. https://doi.org/10.1053/j.ajkd.2014.04.029