N吸附SrTiO3(001)表面电子结构的第一性原理研究
Investigation of Electronic Structures of SrTiO3(001) Surface with N Adsorption by First-Principles
DOI: 10.12677/MS.2017.71002, PDF, HTML, XML, 下载: 1,635  浏览: 2,659  国家自然科学基金支持
作者: 房丽敏:广东省第二师范学院物理系,广东 广州;赵可沦:华南理工大学机械与汽车工程学院,广东 广州
关键词: 吸附表面电子结构原子构型化学键特征第一性原理Adsorption Surface Electronic Structure Atomic Configuration Chemical Bond Characteristics First-Principles
摘要: N掺杂SrTiO3材料已成功用于研制蓝光波段发光二极管、高透明导电薄膜和钙钛矿氧化物光电子器件。本文采用第一性原理平面波赝势方法对N吸附SrTiO3(001)表面的原子构型、化学键特征和电子结构进行了计算研究并解释了In掺杂SrTiO3导电薄膜的相关实验现象。通过吸附能、置换能和态密度的比较分析发现,SrTiO3(001)表面吸附N原子的稳定性与N原子相对表面层的位置密切相关。
Abstract: It is well known that N doped SrTiO3 has been successfully used to develop semiconductor diodes in a blue-light region, transparent conductive films and perovskite-oxides hetero-junction optical- electric devices. The first-principles Plane-Wave PseudoPotential (PWPP) calculations have been performed to investigate the atomic configuration, chemical bond characteristics, and electronic structure of N atomic adsorption on SrTiO3(001) surface with the explanations of the related ex-periment phenomena in the present study. These results indicated that the stability of the ad-sorbed N on the surface depends on the relative position of N atom to the surface by analysis of adsorption energy, substitution energy and density of states.
文章引用:房丽敏, 赵可沦. N吸附SrTiO3(001)表面电子结构的第一性原理研究[J]. 材料科学, 2017, 7(1): 8-18. http://dx.doi.org/10.12677/MS.2017.71002

参考文献

[1] Wagner, F.T. and Somorjai, G.A. (1980) Photocatalytic Hydrogen-Production from Water on Pt-Free SrTiO3 in Alkali Hydroxide Solutions. Nature, 285, 559-560. https://doi.org/10.1038/285559a0
[2] Wang, J.S., Yin, S., et al. (2004) Photo-Oxidation Properties of Nitrogen Doped SrTiO3 Made by Mechanical Activation. Applied Catalysis B: Environmental, 52, 11-21. https://doi.org/10.1016/j.apcatb.2004.03.008
[3] Mi, Y.Y., Wang, S.J., et al. (2006) Effect of Nitrogen Doping on Optical Properties and Electronic Structures of SrTiO3 Film. Applied Physics Letters, 89, Article ID: 231922. https://doi.org/10.1063/1.2403181
[4] Liu, C.M., Zu, X.T. and Zhou, W.L. (2007) Photoluminescence of Nitrogen Doped SrTiO3. Journal of Physics D: Applied Physics, 40, 7318-7322. https://doi.org/10.1088/0022-3727/40/23/011
[5] Marozau, I., Shkabko, A., Dinescu, G., et al. (2009) Pulsed Laser Deposition and Characterization of Nitrogen-Subs- tituted SrTiO3 Thin Films. Applied Surface Science, 255, 5252-5255. https://doi.org/10.1016/j.apsusc.2008.07.159
[6] Herger, R., Willmott, P.R., Bunk, O., et al. (2007) Surface Structure of SrTiO3(001). Physical Review B, 76, Article ID: 195435. https://doi.org/10.1103/PhysRevB.76.195435
[7] Kareev, M., Prosandeev, S., Liu, J., Gan, C., Kareev, A., Freeland, J.W., Xiao, M. and Chakhalian, J. (2008) Atomic Control and Characterization of Surface Defect States of TiO2-Terminated SrTiO3 Single Crystals. Applied Physics Letters, 93, Article ID: 061909. https://doi.org/10.1063/1.2971035
[8] Radovic, M., Lampis, N., Granozio, F.M., et al. (2009) Growth and Characterization of Stable SrO-Terminated SrTiO3 Surfaces. Applied Physics Letters, 94, Article ID: 022901. https://doi.org/10.1063/1.3052606
[9] Enterkin, J.A., Subramanian, A.K., Russell, B.C., et al. (2010) A Homologous Series of Structures on the Surface of SrTiO3(110). Nature Materials, 9, 245-248. https://doi.org/10.1038/nmat2636
[10] Baniecki, J.D., Ishii, M., Kurihara, K., Yamanaka, K., Yano, T., Shinozaki, K., Imada, T., Nozaki, K. and Kin, N. (2008) Photoemission and Quantum Chemical Study of SrTiO3(001) Surfaces and Their Interaction with CO2. Physical Review B, 78, Article ID: 195415. https://doi.org/10.1103/PhysRevB.78.195415
[11] Lin, F., Wang, S., Zheng, F., et al. (2009) Hydrogen-Induced Metallicity of SrTiO3(001) Surfaces. Physical Review B, 79, Article ID: 035311. https://doi.org/10.1103/PhysRevB.79.035311
[12] 房丽敏, 赵可沦. In掺杂SrTiO3导电薄膜光学性质的第一性原理研究[J]. 材料科学, 2015(5): 92-102.
[13] Carrasco, J., Illas, F., Lopez, N., et al. (2006) First-Principles Calculations of the Atomic and Electronic Structure of F Centers in the Bulk and on the (001) Surface of SrTiO3. Physical Review B, 73, Article ID: 064106. https://doi.org/10.1103/PhysRevB.73.064106
[14] Payne, M.C., Teter, M.P., Arias, T.A. and Joannopoulos, J.D. (1992) Iterative Minimization Techniques for ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients. Review Modern Physics, 64, 1045-1097. https://doi.org/10.1103/RevModPhys.64.1045
[15] Segall, M.D., Lindan, P.J.D., Probert, M.J., et al. (2002) First-Principles Simula-tion: Ideas, Illustrations and the CASTEP Code. Journal of Physics: Condensed Matter, 14, 2717-2744. https://doi.org/10.1088/0953-8984/14/11/301
[16] Hohenberg, P. and Kohn, W. (1964) Inhomogeneous Electron Gas. Physical Review B, 136, 864-871. https://doi.org/10.1103/PhysRev.136.B864
[17] Kohn, W. and Sham, L.J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Physics Review A, 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
[18] Casek, P., Finocchi, F. and Noguera, C. (2005) First-Principles Study of Oxygen-Deficient SrTiO3 and MgO(100) Interfaces. Physical Review B, 72, Article ID: 205308. https://doi.org/10.1103/PhysRevB.72.205308
[19] Chen, Q.L., Tang, C.Q. and Zheng, G. (2009) First-Principles Study of TiO2 Anatase (101) Surfaces Doped with N. Physica B, 404, 1074-1078. https://doi.org/10.1016/j.physb.2008.11.032
[20] Ricci, D., Bano, G., Pacchioni, G. and Illas, F. (2003) Electronic Structure of a Neutral Oxygen Vacancy in SrTiO3. Physical Review B, 68, Article ID: 224105. https://doi.org/10.1103/PhysRevB.68.224105
[21] Baranov, A.N., Stepanyuk, V.S., Hergert, W., et al. (2002) Full-Potential KKR Calculations for MgO and Divalent Impurities in MgO. Physical Review B, 66, Article ID: 155117. https://doi.org/10.1103/physrevb.66.155117
[22] Valentin, C.D., Finazzi, E., Pacchioni, G., et al. (2007) N-doped TiO2: Theory and Experiment. Chemical Physics, 339, 44-56. https://doi.org/10.1016/j.chemphys.2007.07.020
[23] Schoenberg, N. (1954) An X-Ray Investigation on Ternary Phases in the Ta-Me-N Systems (Me = Ti, Cr, Mn, Fe, Co, Ni). Acta Chemica Scandinavica, 8, 213-220. https://doi.org/10.3891/acta.chem.scand.08-0213
[24] Benthem, K.V., Elsässser, C. and Fernch, R.H. (2001) Bulk Electronic Structure of SrTiO3: Experiment and Theory. Journal of Applied Physics, 90, 6156-6164. https://doi.org/10.1063/1.1415766
[25] Arai, M., Shigemi, K., Hideki, Y., et al. (2002) Photoelectron Energy-Loss Functions of SrTiO3, BaTiO3, and TiO2: Theory and Experiment. Physical Review B, 65, Article ID: 085101. https://doi.org/10.1103/PhysRevB.65.085101
[26] Kim, Y.S., Kim, J., Moon, S.J., et al. (2009) Localized Electronic States Induced by Defects and Possible Origin of Ferroelectricity in Strontium Titanate Thin Films. Applied Physics Letters, 94, Article ID: 202906. https://doi.org/10.1063/1.3139767
[27] Mackie, R.A., Singh, S., Laverock, J., Dugdale, S.B. and Keeble, D.J. (2009) Vacancy Defect Positron Lifetimes in Strontium Titanate. Physical Review B, 79, Article ID: 014102. https://doi.org/10.1103/physrevb.79.014102
[28] Napoli, F., Chiesa, M., Livraghi, S., et al. (2009) The Nitrogen Photoactive Centre in N-Doped Titanium Dioxide Formed via Interaction of N Atoms with the Solid. Nature and Energy Level of the Species. Chemical Physics Letters, 477, 135-138. https://doi.org/10.1016/j.cplett.2009.06.050
[29] Graciani, J., Nambu, A., Evans, J., et al. (2008) Au↔N Synergy and N-Doping of Metal Oxide-Based Photocatalysts. Journal of the American Chemical Society, 130, 12056-12603. https://doi.org/10.1021/ja802861u
[30] Shkabko, A., Aguirre, M.H., Marozau, I., et al. (2009) Synthesis and Transport Properties of SrTiO3-xNy/SrTiO3-δ Layered Structures Produced by Microwave-Induced Plasma Nitridation. Journal of Physics D: Applied Physics, 42, Article ID: 145202. https://doi.org/10.1088/0022-3727/42/14/145202