电沉积NiMo催化剂增强硅光阴极光解水制氢的研究
NiMo Catalyst Electrodeposited on Si Photocathodes for Enhanced Solar Water Splitting
DOI: 10.12677/APP.2016.612037, PDF, HTML, XML, 下载: 2,020  浏览: 5,790  国家自然科学基金支持
作者: 戴 松*, 沈明荣:苏州大学,苏州纳米科学与技术协同创新中心,江苏省薄膜材料重点实验室,物理与光电?能源学部,江苏 苏州
关键词: 光解水Si光阴极NiMo催化剂光电化学性能Water Splitting Si Photocathodes NiMo Catalyst Photoelectrochemical Properties
摘要: NiMo合金最近作为电解水制氢催化剂得到了较多的研究,但其担载在光解水光阴极上的催化作用则研究较少。本文以稳定性较好的2纳米Al2O3保护的单晶n+p-Si光阴极为基础,利用电沉积方法在其表面制备了NiMo催化剂,研究其光催化活性。通过多次间断电沉积及测试光阴极光电化学特性,确定了最优的NiMo量。在偏中性的邻苯二甲酸氢钾电解液中及100 mW•cm−2 Xe灯照射下,NiMo/Al2O3/n+p-Si光阴极的光电化学活性与对应的Pt/Al2O3/n+p-Si比较接近,开启电压达到0.5 V (vs. RHE),光电流在0 V (vs. RHE)处达到了−32 mA•cm−2。本文也详细研究了不同pH值电解液中光阴极的光电化学稳定性,结果显示NiMo在碱性电解液中的表现最佳,而在酸性溶液中其很快会被腐蚀。
Abstract: Recently, NiMo alloy has received lots of attention for the electrochemical catalyst in water split-ting. However, fewer works studied its catalytic effect on the photoelectrochemical (PEC) reactivity when it is loaded on a photocathode. In this study, we loaded the NiMo alloy on a stable 2 nm Al2O3 protected n+p-Si photocathode using electrodeposition method to explore its PEC catalytic effect. We determined the best amount of NiMo through interrupted electrodeposition and testing of PEC properties. In KHP electrolyte with pH = 4.5 and under the 100 mW•cm−2 Xe lamp illumination, the PEC reactivity of NiMo/Al2O3/n+p-Si is close to that of Pt/Al2O3/n+p-Si. Its on-set potential is 0.5 V (vs. RHE) and photocurrent at 0 V (vs. RHE) can be up to −32 mA•cm−2. We also studied its PEC stability when different electrolytes are used which have different pH values. NiMo is very stable in alkaline electrolyte; however, it is etched quickly in acid one.
文章引用:戴松, 沈明荣. 电沉积NiMo催化剂增强硅光阴极光解水制氢的研究[J]. 应用物理, 2016, 6(12): 296-306. http://dx.doi.org/10.12677/APP.2016.612037

参考文献

[1] Rifkin, J. 第三次工业革命. 张体伟, 孙豫宁, 译. 北京: 中信出版社, 2012: 60-63.
[2] Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A. and Lewis, N.S. (2010) Solar Water Splitting Cells. Chemical Reviews, 110, 6446.
https://doi.org/10.1021/cr1002326
[3] Fujishima, A. and Honda, K. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38.
https://doi.org/10.1038/238037a0
[4] Grätzel, M. (2001) Review Article Photoelectrochemical Cells. Nature, 414, 338-344.
https://doi.org/10.1038/35104607
[5] Vesborg, P.C.K., Seger, B. and Chorkendorff, I. (2015) Recent Development in Hydrogen Evolution Reaction Catalysts and Their Practical Implementation. Journal of Physical Chemistry Letters, 6, 951-957.
https://doi.org/10.1021/acs.jpclett.5b00306
[6] Kang, D., Kim, T.W., Kubota, S.R., Cardiel, A.C., Cha, H.G. and Choi, K.S. (2015) Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting. Chemical Reviews, 115, 12839-12887.
https://doi.org/10.1021/acs.chemrev.5b00498
[7] Trasatti, S. (1972) Work Function, Electronegativity, and Electrochemical Behaviour of Metals: III. Electrolytic Hydrogen Evolution in Acid Solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 39, 163- 184.
https://doi.org/10.1016/S0022-0728(72)80485-6
[8] Kemppainen, E., Bodin, A., Sebok, B., Pedersen, T., Seger, B., Mei, B., Bae, D., Vesborg, P.C.K., Halme, J., Hansen, O., Lund, P.D. and Chorkendorff, I. (2015) Scalability and Feasibility of Photoelectrochemical H2 Evolution: The Ultimate Limit of Pt Nanoparticle as an HER Catalyst. Energy & Environmental Science, 8, 2991-2999.
https://doi.org/10.1039/C5EE02188J
[9] Merki, D., Fierro, S., Vrubel, H. and Hu, X. (2011) Amorphous Molybdenum Sulfide Films as Catalysts for Electrochemical Hydrogen Production in Water. Chemical Science, 2, 1262-1267.
https://doi.org/10.1039/C1SC00117E
[10] Merki, D., Vrubel, H., Rovelli, L., Fierro, S. and Hu, X. (2012) Fe, Co, and Ni Ions Promote the Catalytic Activity of Amorphous Molybdenum Sulfide Films for Hydrogen Evolution. Chemical Science, 3, 2515-2525.
https://doi.org/10.1039/c2sc20539d
[11] Tran, P.D., Pramana, S.S., Kale, V.S., Mai, N., Chiam, S., Batabyal, S.K., Wong, L.H., Barber, J. and Loo, J. (2012) Novel Assembly of an MoS2 Electrocatalyst onto a Silicon Nanowire Array Electrode to Construct a Photocathode Composed of Elements Abundant on the Earth for Hydrogen Generation. Chemistry: A European Journal, 18, 13994-13999.
https://doi.org/10.1002/chem.201202214
[12] Tran, P.D., Chiam, S.Y., Boix, P.P., Ren, Y., Pramana, S.S., Fize, J., Artero, V. and Barber, J. (2013) Novel Cobalt/Nickel—Tungsten-Sulfide Catalysts for Electrocatalytic Hydrogen Generation from Water. Energy & Environmental Science, 6, 2452-2459.
https://doi.org/10.1039/c3ee40600h
[13] Zhou, J., Dai, S., Dong, W., Su, X., Fang, L., Zheng, F., Wang, X., Shen, M. (2016) Efficient and Stable MoS2 Catalyst Integrated on Si Photocathodes by Photoreduction and Post-Annealing for Water Splitting. Applied Physics Letters, 108, Article ID: 213905.
https://doi.org/10.1063/1.4952739
[14] Popczun, E.J., McKone, J.R., Read, C.G., Biacchi, A.J., Wiltrout, A.M., Lewis, N.S. and Schaak, R.E. (2013) Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 135, 9267-9270.
https://doi.org/10.1021/ja403440e
[15] Feng, L., Vrubel, H., Bensimon, M. and Hu, X. (2014) Easily-Prepared Dinickel Phosphide (Ni2P) Nanoparticles as an Efficient and Robust Electrocatalyst for Hydrogen Evolution. Physical Chemistry Chemical Physics, 16, 5917-5921.
https://doi.org/10.1039/c4cp00482e
[16] Scanlon, M.D., Bian, X., Vrubel, H., Amstutz, V., Schenk, K., Hu, X., Liu, B. and Girault, H.H. (2013) Low-Cost Industrially Available Molybdenum Boride and Carbide as “Platinum-Like” Catalysts for the Hydrogen Evolution Reaction in Biphasic Liquid Systems. Physical Chemistry Chemical Physics, 15, 2847-2857.
https://doi.org/10.1039/c2cp44522k
[17] Chen, W.F., Wang, C.H., Sasaki, K., Marinkovic, N., Xu, W., Muckerman, J.T., Zhu, Y. and Adzic, R.R. (2013) Highly Active and Durable Nanostructured Molybdenum Carbide Electrocatalysts for Hydrogen Production. Energy & Environmental Science, 6, 943-951.
https://doi.org/10.1039/c2ee23891h
[18] McCrory, C.C.L., Jung, S., Ferrer, I.M., Chatman, S.M., Peters, J.C. and Jaramillo, T.F. (2015) Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices. Journal of the American Chemical Society, 137, 4347-4357.
https://doi.org/10.1021/ja510442p
[19] McCrory, C.C.L., Jung, S., Peters, J.C. and Jaramillo, T.F. (2013) Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society, 135, 16977-16987.
https://doi.org/10.1021/ja407115p
[20] Nakagawa, T., Beasley, C.A. and Murray, R.W. (2009) Efficient Electro-Oxidation of Water near Its Reversible Potential by a Mesoporous IrOx Nanoparticle Film. Journal of Physical Chemistry C, 113, 12958-12961.
https://doi.org/10.1021/jp9060076
[21] Zhao, Y., Hernandez-Pagan, E.A., Vargas-Barbosa, N.M., Dysart, J.L. and Mallouk, T.E. (2011) A High Yield Synthesis of Ligand-Free Iridium Oxide Nanoparticles with High Electrocatalytic Activity. Journal of Physical Chemistry Letters, 2, 402-406.
https://doi.org/10.1021/jz200051c
[22] Raj, I.A. and Vasu, K. (1992) Transition Metal-Based Cathodes for Hydrogen Evolution in Alkaline Solution: Electrocatalysis on Nickel-Based Ternary Electrolytic Codeposits. Journal of Applied Electrochemistry, 22, 471-477.
https://doi.org/10.1007/BF01077551
[23] Fan, C., Piron, D.L., Sleb, A. and Paradis, P. (1994) Study of Electrodeposited Nickel-Molybdenum, Nickel-Tungsten, Cobalt-Molybdenum, and Cobalt-Tungsten as Hydrogen Electrodes in Alkaline Water Electrolysis. Journal of the Electrochemical Society, 141, 382-387.
https://doi.org/10.1149/1.2054736
[24] Chen, W.F., Sasaki, K., Ma, C., Frenkel, A.I., Marinkovic, N., Mucherman, J.T., Zhu, Y. and Adzic, R.R. (2012) Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel-Molybdenum Nitride Nanosheets. Angewandte Chemie International Edition, 51, 6131-6135.
https://doi.org/10.1002/anie.201200699
[25] Wang, Y., Zhang, G., Xu, W., Wan, P., Lu, Z., Li, Y. and Sun, X. (2014) A 3D Nanoporous Ni-Mo Electrocatalyst with Negligible Overpotential for Alkaline Hydrogen Evolution. ChemElectroChem, 1, 1138-1144.
https://doi.org/10.1002/celc.201402089
[26] Warren, E.L., McKone, J.R., Atwater, H.A., Gray, H.B. and Lewis, N.S. (2012) Hydrogen-Evolution Characteristics of Ni-Mo-Coated, Radial Junction, n+p-Silicon Microwire Array Photocathodes. Energy & Environmental Science, 5, 9653-9661.
https://doi.org/10.1039/c2ee23192a
[27] Lin, Y., Battaglia, C., Boccard, M., Hettick, M., Yu, Z. and Ballif, C.W., Afer, J. and Javey, A. (2013) Amorphous Si Thin Film Based Photocathodes with High Photovoltage for Efficient Hydrogen Production. Nano Letters, 13, 5615-5618.
https://doi.org/10.1021/nl403265k
[28] Fan, R., Min, J., Li, Y., Su, X., Zou, S., Wang, X. and Shen, M. (2015) N-Type Silicon Photocathodes with Al-Doped Rear P+ Emitter and Al2O3-Coated Front Surface for Efficient and Stable H2 Production. Applied Physics Letters, 106, Article ID: 213901.
https://doi.org/10.1063/1.4921845
[29] Fan, R., Dong, W., Fang, L., Zheng, F., Su, X., Zou, S., Huang, J., Wang, X. and Shen, M. (2015) Stable and Efficient Multi-Crystalline n+p Silicon Photocathode for H2 Production with Pyramid-Like Surface Nanostructure and Thin Al2O3 Protective Layer. Applied Physics Letters, 106, Article ID: 013902.
https://doi.org/10.1063/1.4905511
[30] Chen, D., Dai, S., Su, X., Xin, Y., Zou, S., Wang, X., Kang, Z. and Shen, M. (2015) N-Doped Nanodots/np+-Si Photocathodes for Efficient Photoelectrochemical Hydrogen Generation. Chemical Communications, 51, 15340-15343.
https://doi.org/10.1039/C5CC05599G
[31] McKone, J.R., Warren, E.L., Bierman, M.J., Boettcher, S.W., Brunschwig, B.S., Lewis, N.S. and Gray, H.B. (2011) Evaluation of Pt, Ni, and Ni-Mo Electrocatalysts for Hydrogen Evolution on Crystalline Si Electrodes. Energy & Environmental Science, 4, 3573-3583.
https://doi.org/10.1039/c1ee01488a
[32] Morales-Guio, C.G., Liardet, L., Mayer, M.T., Tilley, D., Gratzel, M. and Hu, X. (2015) Photoelectrochemical Hydrogen Production in Alkaline Solutions Using Cu2O Coated with Earth-Abundant Hydrogen Evolution Catalysts. Angewandte Chemie International Edition, 54, 664-667.
https://doi.org/10.1002/ange.201410569