Sobolev方程的一个紧致差分格式
A Compact Finite Difference Scheme for Sobolev Equations
DOI: 10.12677/PM.2017.71001, PDF, HTML, XML, 下载: 1,290  浏览: 1,549 
作者: 经 鑫*, 张鲁明:南京航空航天大学理学院,江苏 南京
关键词: Sobolev方程紧致差分格式收敛性Sobolev Equations Compact Finite Difference Scheme Convergence
摘要: 本文对Sobolev方程提出了一个紧致差分格式。并用能量方法证明了该差分格式是以无穷模范数无条件收敛和稳定的,收敛阶为O (τ2+h4) 。数值实验结果验证了理论分析的正确性。
Abstract: A compact finite difference scheme is presented for Sobolev equations. It is proved by the discrete energy method that the compact scheme is unconditionally stable and convergent in norm, and the order of convergence is O (τ2+h4) . The numerical experiment results show that the theory is accurate.
文章引用:经鑫, 张鲁明. Sobolev方程的一个紧致差分格式[J]. 理论数学, 2017, 7(1): 1-9. http://dx.doi.org/10.12677/PM.2017.71001

参考文献

[1] Barenblett, G.I., Zheltov, I.P. and Kochian, I.N. (1990) Basic Concepts in the Theory of Homogeneous Liquids in Fissured Rocks. Journal of Applied Mathematics and Mechanics, 24, 1286-1303. https://doi.org/10.1016/0021-8928(60)90107-6
[2] 施德明. 非线性湿气迁移方程的边值问题[J]. 应用数学学报, 1990, 13(1): 33-40.
[3] Ting, T.W. (1974) A Cooling Process According to Two-Temperature Theory of Heat Conduction. Journal of Mathematical Analysis and Applications, 45, 23-31. https://doi.org/10.1016/0022-247X(74)90116-4
[4] 郭会, 芮洪兴. Sobolev方程的最小二乘Galerkin有限元方法[J]. 应用数学学报, 2006, 29(4): 610-618.
[5] 郭玲, 陈焕贞. Sobolev方程的H1-Galerkin混合有限元方法[J]. 系统科学与数学, 2006, 26(3): 302-314.
[6] 何斯日古楞, 李宏. Sobolev方程的时间间断Galerkin有限元方法[J]. 高校应用数学学报, 2011, 26(4): 467-473.
[7] 李宏, 罗振东, 安静, 孙萍. Sobolev方程的全离散有限体积元格式及数值模拟[J]. 计算数学, 2012, 34(2): 164- 172.
[8] 李宏, 周文文, 方志朝. Sobolev方程的CN全离散化有限元格式[J]. 计算数学, 2013, 35(1): 41-47.
[9] 史艳华, 石东洋. Sobolev方程新混合元方法的高精度分析[J]. 系统科学与数学, 2014, 34(4): 452-463.
[10] Zhao, Z.H., Li, H. and Luo, Z.D. (2016) A New Space-Time Continuous Galerkin Method with Mesh Modification for Sobolev Equations. Journal of Mathematical Analysis and Applications, 400, 86-105. https://doi.org/10.1016/j.jmaa.2016.03.035
[11] 罗振东, 张博. Sobolev方程基于POD的降阶外推差分算法[J]. 应用数学和力学, 2016, 37(1): 108-116.
[12] Liao, H.L. and Sun, Z.Z. (2010) Maximum Norm Error Bounds of ADI and Compact ADI Methods for Solving Parabolic Equations. Numerical Methods Partial Differential Equations, 26, 37-60. https://doi.org/10.1002/num.20414