洞察未来:未来情景想象的表象编码
Insight into the Future: Image Coding for Future Scenarios
DOI: 10.12677/AP.2017.71002, PDF, HTML, XML, 下载: 1,732  浏览: 2,290  国家科技经费支持
作者: 何立国, 郭田友, 陈玉明:深圳大学心理与社会学院,广东 深圳
关键词: 想象未来表象情景Imagining the Future Image Scene
摘要: 想象未来对个体的生存具有重要的适应性价值,它是如何在大脑中表征的呢?本文首先介绍了人类大脑信息表征的两种编码系统,然后介绍了为情景想象和表象编码的生理基础,最后以该领域的研究进行了展望。
Abstract: Imagining the future has important adaptive value to individual’s survival, but how does it represent in the brain? The paper first introduces the human brain information representation of the two coding systems first, and then argues the neural basis of the scene image and the image coding. Finally, the paper also expounds the problems to be studied in the future.
文章引用:何立国, 郭田友, 陈玉明 (2017). 洞察未来:未来情景想象的表象编码. 心理学进展, 7(1), 9-14. http://dx.doi.org/10.12677/AP.2017.71002

参考文献

[1] Albers, A. M., Kok, P., Toni, I., Dijkerman, H. C., & de Lange, F. P. (2013). Shared Representations for Working Memory and Mental Imagery in Early Visual Cortex. Current Biology, 23, 1427-1431. https://doi.org/10.1016/j.cub.2013.05.065
[2] Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The Default Network and Self-Generated Thought: Component Processes, Dynamic Control, and Clinical Relevance. Annals of the New York Academy of Sciences, 1316, 29-52. https://doi.org/10.1111/nyas.12360
[3] Andrews-Hanna, J. R., Reidler, J. S., Huang, C., & Buckner, R. L. (2010). Evidence for the Default Network’s Role in Spontaneous Cognition. Journal of Neurophysiology, 104, 322-335. https://doi.org/10.1152/jn.00830.2009
[4] Blazhenkova, O., & Kozhevnikov, M. (2009). The New Object-Spatial-Verbal Cognitive Style Model: Theory and Measurement. Applied Cognitive Psychology, 23, 638-663. https://doi.org/10.1002/acp.1473
[5] Collins, D. W., & Kimura, D. (1997). A Large Sex Difference on a Two Dimensional Mental Rotation Task. Behavioral Neuroscience, 111, 845-849. https://doi.org/10.1037/0735-7044.111.4.845
[6] Campos, A., & Sueiro, E. (1993). Sex and Age Differences in Visual Imagery Vividness. Journal of Mental Imagery, 17, 91-94.
[7] Farah, M. J., Hammond, K. M., Lewvine, D. N., & Calvanio, R. (1988). Visual and Spatial Mental Imagery: Dissociable Systems of Representation. Cognitive Psychology, 20, 439-462. https://doi.org/10.1016/0010-0285(88)90012-6
[8] Harrison, S. A., & Tong, F. (2009). Decoding Reveals the Contents of Visual Working Memory in Early Visual Areas. Nature, 458, 632–635. https://doi.org/10.1038/nature07832
[9] Hassabis, D., & Maguire, E. A. (2007). Deconstructing episodic Memory with Construction. Trends in Cognitive Sciences, 11, 299-306. https://doi.org/10.1016/j.tics.2007.05.001
[10] Kosslyn, S. M. (1980). Image and Mind. Cambridge, MA: Harvard University Press.
[11] Kosslyn, S. M. (1981). The Medium and the Message in Mental Imagery: A Theory. Psychological Review, 88, 46-66. https://doi.org/10.1037/0033-295X.88.1.46
[12] Kosslyn, S. M. (1973). Scanning Visual Images: Some Structural Implications. Perception and Psychophysics, 14, 90-94. https://doi.org/10.3758/BF03198621
[13] Levine, D. N., Warach, J., & Farah, M. (1985). Two Visual Systems in Mental Imagery: Dissociation of “What” and “Where” in Imagery Disorders Due to Bilateral Posterior Cerebral Lesions. Neurology, 35, 1010-1018. https://doi.org/10.1212/WNL.35.7.1010
[14] Lamm, C., Bauer, H., Vitouch, O., & Gstättner, R. (1999). Differences in the Ability to Process a Visuo-Spatial Task Are Reflected in Event-Related Slow Cortical Potentials of Human Subjects. Neuroscience Letters, 269, 137-140. https://doi.org/10.1016/S0304-3940(99)00441-3
[15] Motes, M. A., Malach, R., & Kozhevnikov, M. (2008). Ob-ject-Processing Neural Efficiency Differentiates Object from Spatial Visualizers. NeuroReport, 19, 1727-1731. https://doi.org/10.1097/WNR.0b013e328317f3e2
[16] Naselaris, T., Olman, C. A., Stansbury, D. E., Ugurbil, K., & Gallant, J. L. (2015). A Voxel-Wise Encoding Model for Early Visual Areas Decodes Mental Images of Remembered Scenes. NeuroImage, 105, 215-228. https://doi.org/10.1016/j.neuroimage.2014.10.018
[17] Paivio, A., & Clark, J. M. (1991). Static versus Dynamic Imagery. In C. Cornoldi, & M. A. McDaniels (Eds.), Imagery and Cognition (pp. 221-245). New York: Springer. https://doi.org/10.1007/978-1-4684-6407-8_7
[18] Pearson, J., & Kosslyn, S. M. (2015). The Heterogeneity of Mental Representation: Ending the Imagery Debate. PNAS, 112, 10089-10092. https://doi.org/10.1073/pnas.1504933112
[19] Pylyshyn, Z. W. (1973). What the Mind’s Eye Tells the Mind’s Brain: A Critique of Mental Imagery. Psychological Bulletin, 80, 1-24. https://doi.org/10.1037/h0034650
[20] Pylyshyn, Z. W. (1979). Imagery Theory: Not Mysterious-Just Wrong. Behavioral and Brain Sciences, 2, 561-563. https://doi.org/10.1017/S0140525X0006444X
[21] Shepard, R. N., & Metzler, J. (1971). Mental Rotation of Three-Dimensional Objects. Science, 171, 701-703. https://doi.org/10.1126/science.171.3972.701
[22] Schacter, D. L., & Addis, D. R. (2007). The Cognitive Neuroscience of Constructive Memory: Remembering the Past and Imagining the Future. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 773-786. https://doi.org/10.1098/rstb.2007.2087
[23] Tamir, D. I., & Mitchell, J. P. (2011). The Default Network Distinguishes Construals of Proximal versus Distal Events. Journal of Cognitive Neuroscience, 23, 2945-2955. https://doi.org/10.1162/jocn_a_00009
[24] Østby, Y., Walhovd, K. B., Tamnes, C. K., Grydeland, H., Westlye, L. T., & Fjell, A. M. (2012). Mental Time Travel and Default-Mode Network Functional Connectivity in the Developing Brain. Proceedings of the National Academy of Sciences of the United States of America, 109, 16800-16804. https://doi.org/10.1073/pnas.1210627109
[25] Uhl, F., Goldenberg, G., Lang, W., & Lindinger, G. (1990). Cerebral Correlates of Imagining Colours, Faces and a Map: II. Negative Cortical DC Potentials. Neuropsychologia, 28, 81-93. https://doi.org/10.1016/0028-3932(90)90088-6
[26] Van Leijenhorst, L., Crone, E. A., & Van der Molen, M. W. (2007). Developmental Trends for Object and Spatial Working Memory: A Psychophysiological Analysis. Child Development, 78, 987-1000. https://doi.org/10.1111/j.1467-8624.2007.01045.x
[27] Washington, S. D., Gordon, E. M., Brar, J., Warburton, S., Sawyer, A. T., Wolfe, A., & VanMeter, J. W. (2014). Dysmaturation of the Default Mode Network in Autism. Human Brain Mapping, 35, 1284-1296. https://doi.org/10.1002/hbm.22252