MP  >> Vol. 7 No. 1 (January 2017)

    统计诠释和微观单个事件守恒律及态叠加原理的讨论
    Discussion of the Statistical Interpretation, the Conservation Laws in Single Micro-Process and the Principle of Superposition of States

  • 全文下载: PDF(457KB) HTML   XML   PP.8-16   DOI: 10.12677/MP.2017.71002  
  • 下载量: 257  浏览量: 597   国家自然科学基金支持

作者:  

曾天海:北京理工大学物理学院,北京

关键词:
统计诠释微观单个事件的系统的能量和动量的守恒律态叠加原理相互作用纠缠态非定域性Statistical Interpretation Conservation Laws in Single Micro-Process Principle of Superposition of States Interaction Entangled State Non-Locality

摘要:

玻恩和博特在1954年同获诺贝尔物理学奖。玻恩的获奖成就与博特的毫无关联。人们猜测有联系的是,博特与盖革共同验证了的单个康普顿碰撞的能量守恒和动量守恒,否定了玻尔等人关于微观世界只有能量和动量的统计守恒的观点,而这会与玻恩的统计诠释相矛盾。这里我提出对态叠加原理修改的建议,在表述中增加两个限制,即用于有相互作用的复合系统中并满足微观单个事件的系统的能量和动量的守恒律,试图消除这类守恒律和统计诠释之间的矛盾,使这两方面在量子力学中得到兼容。若在1935年之前出现这种修改,爱因斯坦等人就不能运用沿用至今的态叠加原理和薛定谔方程,设想出他们和许多人所不能理解的没有相互作用的纠缠,即存在非定域性的纠缠,来质疑量子力学的完备性。运用修改后的态叠加原理和物理学定义,本文对实验验证的非定域性提出质疑。

Born and Bothe shared the Nobel Prize in Physics in 1954. Born’s achievement for the Prize was not related with Bothe’s. The relation was guessed that Bothe and Geiger proved the conservations of energy and momentum by single Compton collisions experimentally, which negated the viewpoint of Bohr et al. that there only exist the conservations of energy and momentum with statistics in microcosm, respectively. This conflicted with Born’s statistical interpretation. Here I propose a modification of the principle of superposition of states, which adds two restrictive conditions to the principle: it must be used in a composite system with interaction and meet the conservation laws of single micro-process. Such modification can eliminate the contradiction of the conservation laws and the statistical interpretation, and let them both hold in quantum mechanics. If the modification appeared before 1935, Einstein et al. could not use the principle of superposition of states, which is still used now, and Schrödinger’s equation to imagine the entanglement without interaction, i.e., the entanglement with non-locality, which was not understood by them and many others, to query the completeness of quantum mechanics. By the modified principle and the definition of physics, this paper queries those experimental proofs for the non-locality.

文章引用:
曾天海. 统计诠释和微观单个事件守恒律及态叠加原理的讨论[J]. 现代物理, 2017, 7(1): 8-16. http://dx.doi.org/10.12677/MP.2017.71002

参考文献

[1] 谭树杰. 百年诺贝尔奖(物理卷) [M]. 上海: 上海科学技术出版社, 2001: 118-119.
[2] 曾谨言. 量子力学: 卷I [M]. 第四版. 北京: 科学出版社, 2010: 11, 53-54, 305-307.
[3] Bothe, W. and Geiger, H. (1925) Über das Wesen des Comptoneffekts; ein experimenteller Beitrag zur Theorie der Strahlung. Zeitschrift für Physik A, 32, 639. https://doi.org/10.1007/BF01331702
[4] Bohr, N., Kramers, H.A. and Slater, J.C. (1924) Über die Quantentheorie der Strahlung. Zeitschrift für Physik A, 24, 69. https://doi.org/10.1007/BF01327235
[5] Dirac, P.A.M. (2008) The Principle of Quantum Mechanics. Science Press, Beijing, 1-4.
[6] Landau, L.D., Lifshitz, E.M. Quantum Mechanics [M]. 北京: 世界图书出版公司, 2007: XI.
[7] Feynman, R. The Feynman Lecture on Physics (Vol. I, Vol. III) [M]. 北京: 世界图书出版公司, 2004.
[8] Cohen-Tannoudji, C., Diu, B., Laloё, F. 量子力学[M]. 刘家谟, 陈星奎, 译. 北京: 高等教育出版社, 1987.
[9] Shankar, R. 量子力学原理[M]. 北京: 世界图书出版公司, 2007.
[10] Griffiths, D.J. (2005) Introduction to Quantum Mechanics [M]. 北京: 机械工业出版社.
[11] 周世勋. 量子力学教程[M]. 北京:人民教育出版社, 1979.
[12] 钱伯初. 量子力学[M]. 北京: 高等教育出版社, 2006.
[13] 张永德. 量子力学[M]. 北京: 科学出版社, 2008.
[14] 喀兴林. 高等量子力学[M]. 北京: 高等教育出版社, 2001.
[15] 倪光炯, 陈苏卿. 高等量子力学[M]. 上海: 复旦大学出版社, 2003.
[16] 曾谨言, 裴寿镛, 龙桂鲁, 等, 主编. 量子力学新进展第一至第五辑[M]. 北京: 北京大学或清华大学出版社, 2000-2011.
[17] 曾天海. 一类近似等式与单个粒子叠加态的概念性的讨论[J]. 大学物理, 2016, 35(11): 20.
[18] 曾天海. 狄拉克与朗道关于量子测量观念的冲突与部分兼容的探讨[J]. 现代物理, 2016, 6(6): 177.
[19] 朗道, 栗弗席茨. 量子力学(非相对论理论)上册[M]. 严肃, 译. 北京: 人民教育出版社, 1980: 英文第一版序言.
[20] Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Consi-dered Complete? Physical Review, 47, 777-780. https://doi.org/10.1103/PhysRev.47.777
[21] Walls, D.F. and Milburn, G.J. (1994) Quantum Optics. Springer, Berlin, 204-205. https://doi.org/10.1007/978-3-642-79504-6
[22] Bertet, P., Osnaghi, S., Rauschenbeutel, A., et al. (2001) A Complementarity Experiment with an Interferometer at the Quantum-Classical Boundary. Nature, 411, 166-170. https://doi.org/10.1038/35075517
[23] Monroe, C., Meekhof, D.M., King, B.E. and Wineland, D.J. (1996) A “Schrödinger Cat” Superposition State of an Atom. Science, 272, 1131-1136. https://doi.org/10.1126/science.272.5265.1131
[24] Bohr, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 48, 696-702. https://doi.org/10.1103/PhysRev.48.696
[25] Freedman, S.J. and Clauser, J.F. (1972) Experimental Test of Local Hidden-Variable Theories. Physical Review Letters, 28, 938-941. https://doi.org/10.1103/PhysRevLett.28.938
[26] Aspect, A., Grangier, P. and Roger, G. (1981) Experimental Tests of Realistic Local Theories via Bell’s Theorem. Physical Review Letters, 47, 460-463. https://doi.org/10.1103/PhysRevLett.47.460
[27] Aspect, A., Grangier, P. and Roger, G. (1982) Experimental Realization of Einstein-Podosky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities. Physical Review Letters, 49, 91-97. https://doi.org/10.1103/PhysRevLett.49.91
[28] Kwiat, P.G., Mattle, K., Weinfurter, H. and Zeilinger, A. (1995) New High-Intensity Source of Polarization-Entangled Photon Pairs. Physical Review Letters, 75, 4337-4341. https://doi.org/10.1103/PhysRevLett.75.4337
[29] Nambu, Y., Usami, K., Tsuda, Y., Matsumoto, K. and Nakamura, K. (2002) Generation of Polarization-Entangled Photon Pairs in a Cascade of Two Type-I Crystals Pumped by Femtosecond Pulses. Physical Review A, 66, Article ID: 033816. https://doi.org/10.1103/physreva.66.033816
[30] Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J. and Scarani, V. (2011) Experimentally Faking the Violation of Bell’s Inequalities. Physical Review Letters, 107, Article ID: 170404. https://doi.org/10.1103/physrevlett.107.170404
[31] Aktas, D., Tanzilli, S., Martin, A., Pütz, G., Thew, R. and Gisin, N. (2015) Demonstration of Quantum Nonlocality in the Presence of Measurement Dependence. Physical Review Letters, 114, Article ID: 220404. https://doi.org/10.1103/physrevlett.114.220404
[32] Giustina, M., Versteegh, M.A.M., Wengerowsky, S., et al. (2015) Signifi-cant-Loophole-Free Test of Bell’s Theorem with Entangled Photons. Physical Review Letters, 115, Article ID: 250401. https://doi.org/10.1103/physrevlett.115.250401
[33] Shalm, L.K., Meyer-Scott, E., Christensen, B.G., et al. (2015) Strong Loo-phole-Free Test of Local Realism. Physical Review Letters, 115, Article ID: 250402. https://doi.org/10.1103/physrevlett.115.250402
[34] Hensen, B., Bernien, H., Dréau, A.E., et al. (2015) Loophole-Free Bell Inequality Violation Using Electron Spins Separated by 1.3 Kilometers. Nature, 526, 682-686. https://doi.org/10.1038/nature15759
[35] Dehollain, J.P., Simmons, S., Muhonen, J., et al. (2016) Bell’s Inequality Violation with Spins in Silicon. Nature Nanotechnology, 11, 242-246. https://doi.org/10.1038/nnano.2015.262
[36] Wiseman, H. (2015) Death by Experiment for Local Realism. Nature, 526, 649-650. https://doi.org/10.1038/nature15631
[37] Aspect, A. 爱因斯坦与玻尔有关量子理论的旷世争论宣告终结?[N]. 赛先生, 石云, 译. 2016-01-08.