CCRL  >> Vol. 6 No. 1 (January 2017)

    臭氧浓度升高对农田土壤呼吸、硝化及反硝化作用的影响
    Effects of Elevated Ozone Concentration on Soil Respiration, Nitrification and Denitrification in a Farmland

  • 全文下载: PDF(1269KB) HTML   XML   PP.11-21   DOI: 10.12677/CCRL.2017.61002  
  • 下载量: 787  浏览量: 1,402  

作者:  

石 侃:新疆维吾尔自治区哈密地区气象局,新疆 哈密市

关键词:
臭氧浓度升高土壤呼吸硝化反硝化作用Ozone Concentrations Soil Respiration Nitrification and Denitrification

摘要:

自2010年春季,于南京信息工程大学农业气象试验站采用开顶式气室(OTC)大田试验,利用臭氧自动发生和调控系统模拟臭氧浓度升高环境,测定土壤呼吸速率、硝化与反硝化速率,同时观测土壤温度和土壤湿度,探讨臭氧浓度升高对冬小麦农田土壤呼吸、硝化及反硝化作用的影响。结果表明,臭氧浓度升高对冬小麦农田土壤呼吸速率的生育期内的变化规律无显著影响,但会降低冬小麦农田土壤呼吸,同时臭氧浓度升高会限制冬小麦农田土壤温度对土壤呼吸的影响,随着臭氧浓度升高,Q10值减小,降低了冬小麦农田土壤呼吸的温度敏感性,也会减小冬小麦农田土壤湿度对土壤呼吸的影响,而臭氧浓度升高可能降低了冬小麦农田土壤硝化速率和反硝化速率,但降低幅度均不显著。

Since the spring of 2010, we used open-top chamber for ozone (OTC) field experiment in Nanjing University of Information Science & Technology agriculture experiment stations; the ozone automatic generation and regulation system was used to simulate the environment of rising ozone concentration, to measure soil respiration rate, nitrification and denitrification rate. Meanwhile, we observed soil temperature and soil moisture, and discussed the effect of rising ozone concentration on soil respiration, nitrification and denitrification in winter wheat field. The results showed that rising ozone concentration had no significant effect on the change rule of soil respiration rate in winter wheat field during growth period, but it would lower the soil respiration in winter wheat field. At the same time, rising ozone concentration would limit the effect of soil temperature in winter wheat field on soil respiration. With ozone concentration increasing, Q10 value would decrease, which lowered the temperature sensitivity of soil respiration in winter wheat field and decreased the effect of soil temperature in winter wheat field on soil respiration as well, but the rising of ozone concentration might lower nitrification rate and denitrification rate of winter wheat field soil, yet not significant reduction extent.

文章引用:
石侃. 臭氧浓度升高对农田土壤呼吸、硝化及反硝化作用的影响[J]. 气候变化研究快报, 2017, 6(1): 11-21. http://dx.doi.org/10.12677/CCRL.2017.61002

参考文献

[1] Richards, B.L., Middleton, J.T. and Hewitt, W.B. (1958) Air Pollution with Relation to Agronomic Crops. V. Oxidant Stipple of Grape. Agronomy Journal, 50, 559-561.
https://doi.org/10.2134/agronj1958.00021962005000090019x
[2] 陈展, 王效科, 冯兆忠, 等. 臭氧对生态系统地下过程的影响. 生态学杂志, 2007, 26(1): 121-125.
[3] 李凌浩, 陈佐忠. 草地群落的土壤呼吸[J]. 生态学杂志, 1998, 17(4): 45-51.
[4] 齐志勇, 王宏燕, 王江丽, 等. 陆地生态系统土壤呼吸的研究进展[J]. 农业系统科学与综合研究, 2003, 19(2): 116-119.
[5] Schlesinger, W.H. and Andrews, J.A. (2000) Soil Respiration and the Global Carbon Cycle. Biogeochemistry, 48, 7-20.
https://doi.org/10.1023/A:1006247623877
[6] 贾丙瑞, 周广胜, 王风玉, 等. 土壤微生物与根系呼吸作用影响因子分析[J]. 应用生态学报, 2005, 16(8): 1547-1552.
[7] 叶功富, 肖胜生, 郭瑞红, 等. 不同林龄木麻黄人工林土壤呼吸的季节动态[J]. 海峡科学, 2008(10): 37-56.
[8] 刘小兰, 李世清. 土壤中的氮素与环境[J]. 干旱地区农业研究, 1998, 16(1): 36-43.
[9] 刘义, 陈劲松, 刘庆, 等. 土壤硝化和反硝化作用及影响因素研究进展[J]. 四川林业科技, 2006, 27(2): 36-42.
[10] 颜晓元, 施书莲, 杜丽娟, 等. 水分状况对水田土壤N2O排放的影响. 土壤学报, 2000, 37(4): 482-488.
[11] 刘义, 陈劲松, 刘庆, 陈林武. 土壤硝化和反硝化作用及影响因素研究进展[J]. 四川林业科技, 2006, 27(2): 36-42.
[12] 范晓晖, 朱兆良. 旱地土壤中的硝化–反硝化作用[J]. 土壤通报, 2002, 33(5): 385-391.
[13] 俞慎, 李振高. 稻田生态系统生物硝化–反硝化作用与氮素损失[J]. 应用生态学报, 1999, 10(5): 630-634.
[14] 张树兰, 杨学云, 吕殿青, 同延安. 温度, 水分及不同氮源对土壤硝化作用的影响[J]. 生态学报, 2002, 22(12): 2147-2153.
[15] Axelsson, S.R.J. and Lunden, B. (1985) Experimental Result on Soil Moisture Correlation with Thermal Infared Data. Soil Science, 1, 11-22.
[16] 丁雷, 徐慧, 赵明宪. 土壤硝化和反硝化作用研究方法进展[J]. 江西农业学报, 2007, 19(4): 46-48.
[17] 刘巧辉, 黄耀, 郑循华. 基于BaPS系统的旱地土壤呼吸作用及其分量确定探讨[J]. 环境科学学报, 2005, 25(8): 1105-1111.
[18] 陈述悦, 李俊, 陆佩玲, 王迎红, 于强. 华北平原麦田土壤呼吸特征[J]. 应用生态学报, 2004, 15(9): 1552-1560.
[19] Fang, C. and Moncrieff, J.B. (2001) The Dependence of Soil CO2 Efflux on Temperature. Soil Biology & Biochemistry, 33, 155-165.
https://doi.org/10.1016/S0038-0717(00)00125-5
[20] Liu, X.Z., Wan, S.Q., Su, B., Hui, D. and Luo, Y. (2002) Response of Soil CO2 Efflux to Water Manipulation in a Tallgrass Prairie Ecosystem. Plant and Soil, 240, 213-223.
https://doi.org/10.1023/A:1015744126533
[21] McCool, P.M. and Menge, J.A. (1983) Influence of Ozone on Carbon Partitioning in Tomato: Potential Role of Carbon Flow in Regulation of the Mycorrhizal Symbiosis under Conditions of Stress. New Phytologist, 94, 241-247.
https://doi.org/10.1111/j.1469-8137.1983.tb04497.x
[22] 石春红, 郑有飞, 吴芳芳, 等. 大气中臭氧浓度增加对根际和非根际土壤微生物的影响[J]. 土壤学报, 2009, 46(5): 894-898.
[23] Edwards, N.T. (1991) Root and Soil Respiration Responses to Ozone in Pinus taeda L. Seedlings. New Phytologist, 118, 315-321.
https://doi.org/10.1111/j.1469-8137.1991.tb00983.x
[24] McCrady, J.K. and Andersen, C.P. (2000) The Effect of Ozone on Belowground Carbon Allocation in Wheat. Environmental Pollution, 107, 465-472.
https://doi.org/10.1016/S0269-7491(99)00122-0
[25] Moore, D.R.E. and Waid, J.S. (1971) The Influence of Washings of Living Roots on Nitrification. Soil Biology and Biochemistry, 3, 69-83.
https://doi.org/10.1016/0038-0717(71)90032-0
[26] Mielnick, P.C. and William, A.D. (2000) Soil CO2 Flux in a Tallgrass Prairie. Soil Biology and Biochemistry, 32, 221-228.
https://doi.org/10.1016/S0038-0717(99)00150-9
[27] Yoshida, L.C., Gamon, J.A. and Andersen, C.P. (2001) Differences in Above- and Below-Ground Responses to Ozone between Two Populations of a Perennial Grass. Plant and Soil, 233, 203-211.
https://doi.org/10.1023/A:1010321509628