可倾转双旋翼微型飞行器飞行力学模型研究
Flight Dynamic Mathematical Model of Tilt Dual Rotor Micro Aerial Vehicle
DOI: 10.12677/app.2011.12012, PDF, HTML, 下载: 3,758  浏览: 10,940 
作者: 蔡红明*, 昂海松*, 段文博*:南京航空航天大学航空宇航学院,南京
关键词: 微型飞行器飞行力学模型叶素理论双旋翼
Micro Aerial Vehicle; Flight Dynamics Model; Element Theory; Dual Rotor
摘要: 微型飞行器(MAV)非线性飞行力学模型研究是MAV设计中的一个重要环节。可倾转双旋翼微型飞行器的非常规气动布局和大飞行包线使得其空气动力学特性与常规飞行器有很大差异。以理论计算为基础,在MATLAB/Simulink环境下建立了双旋翼微型飞行器的飞行力学模型。在建模过程中,采用非定常叶素理论计算旋翼的气动力,采用升力线理论计算机翼、尾翼和机身的气动力。对于气动干扰的问题,则着重考虑了螺旋桨滑流对机翼的影响。最后计算了MAV在不同飞行模式下的飞行性能和配平结果。结果表明,在整个飞行包线中,升降舵有足够的操纵权限来进一步改变MAV的飞行状态,MAV可以悬停,以直升机模式低速前飞,而且能以飞机模式快速前飞。
Abstract: Research on nonlinear dynamic model of Micro Air Vehicle (MAV) plays an important role in MAV design. Its special design in configuration and large flight envelope make it more different from other aircrafts in aerodynamic characteristics. The flight dynamic model of the dual rotor MAV was established in MATLAB/Simulink environment based on research to the aerodynamic of the rotor and wing. Unsteady ele-ment theory was used to analyze the lift, drag, and moment of the rotor. The lift line theory was used to re-search the aerodynamics of the wing, fuselage, horizontal and vertical tails. The aerodynamic interference between propeller and wing was considered. At last, the MAV flight performance was calculated and trimmed in various flight modes. The results show that elevator has enough control authority to change the flight con-dition in the whole flight envelop and the MAV can hover, fly slowly in helicopter mode and fly rapidly in wing-borne mode.
文章引用:蔡红明, 昂海松, 段文博. 可倾转双旋翼微型飞行器飞行力学模型研究[J]. 应用物理, 2011, 1(2): 76-79. http://dx.doi.org/10.12677/app.2011.12012

参考文献

[1] J. Fleming, T. Jones, W. Ng, et al. Improving controls system effectiveness for ducted fan VTOL UAVs operating in cross-winds. San Diego: Proceedings of the 2nd “Unmanned Unlim-ited” System, Technologies, and Operations-Aerospace, 2003: 15-18.
[2] M. R. Waszak, J. B. Davidson. Simulation and flight control of an aeroelastic fixed wing micro aerial vehicle. Montreal: AIAA Atmospheric Flight Mechanics Conference, 2001.
[3] N. E. Sevant, M. I. G. Bloor, and M. J. Wilson. Aerodynamic design of a flying wing using response surface methodology. Journal of Aircraft, 2002, 37(4): 562-569.
[4] 段文博. 可悬停双旋翼微型飞行器设计与制造[D]. 南京航空航天大学, 2008.
[5] 罗东明, 昂海松, 周军等. 螺旋桨式微型飞行器飞行特性分析[J]. 航空计算技术, 2003, 33(3): 35-38.