MS  >> Vol. 7 No. 1 (January 2017)

    取向生长TiO2阵列薄膜的致密度和薄膜电阻调控研究
    Study on Density and Resistance Regulation of Oriented TiO2 Nanorod Array Films

  • 全文下载: PDF(2011KB) HTML   XML   PP.143-148   DOI: 10.12677/MS.2017.71018  
  • 下载量: 854  浏览量: 2,050  

作者:  

张志成,曹宇星,李文睿,周晓燕,夏晓红:湖北大学材料科学与工程学院,湖北 武汉

关键词:
TiO2致密度膜电阻水热法取向生长TiO2 Density Film Resistance Hydrothermal Method Oriented Growth

摘要:

TiO2薄膜的致密度和膜电阻对TiO2材料的功能应用有非常重要的影响。本文采用传统水热合成方法,通过调节前驱液中乙醇和水的比例,制备出了不同致密度和膜电阻的取向生长TiO2纳米柱阵列薄膜(TiO2nano-rods arrays film, TNRAF)。结果表明,乙醇的添加对TNRAF的形貌及取向生长有很大的影响。乙醇含量增加,TNRAF的(002)取向生长明显增强,粒径变小,表面形貌光滑,表面裂纹增加,初始电阻逐渐增加。

Fabrication of titania (TiO2) with specific film density and resistance is of great importance to functional application of TiO2-based materials. In this work, by using hydrothermal method, we prepared TiO2 Nano-Rods Arrays Film (TNRAF) with different crystal orientation and morphologies via adjusting the ratio of absolute ethyl alcohol to deionized water in hydrothermal precursor. The results indicated that (002) oriented growth of the thin films was obviously enhanced by increasing the content of absolute ethyl alcohol. Diameter of the nanorods in TNRAF decreased; surface of TNRAF got smoother; more cracks appeared on the surface of the thin films; and the initial resistance of TNRAF grew bigger.

文章引用:
张志成, 曹宇星, 李文睿, 周晓燕, 夏晓红. 取向生长TiO2阵列薄膜的致密度和薄膜电阻调控研究[J]. 材料科学, 2017, 7(1): 143-148. http://dx.doi.org/10.12677/MS.2017.71018

参考文献

[1] Gong, J., Sumathy, K., Qiao, Q. and Zhou, Z. (2017) Review on Dye-Sensitized Solar Cells (DSSCs): Advanced Techniques and Research Trends. Renewable and Sustainable Energy Reviews, 68, 234-246. https://doi.org/10.1016/j.rser.2016.09.097
[2] Rahimi, N., Pax, R.A. and Gray, E.M. (2016) Review of Functional Titanium Oxides. I: TiO2 and Its Modifications. Progress in Solid State Chemistry, 44, 86-105. https://doi.org/10.1016/j.progsolidstchem.2016.07.002
[3] Moon, J.Y. (2016) Hydrogen Sensor Application of Anodic Titanium Oxide Nanostructures. PhD Thesis, University of Turku, Turku.
[4] Chong, M.N., Jin, B., Chow, C.W. and Saint, C. (2010) Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Research, 44, 2997-3027. https://doi.org/10.1016/j.watres.2010.02.039
[5] Feng, X., Shankar, K., Varghese, O.K., et al. (2008) Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications. Nano Letters, 8, 3781- 3786. https://doi.org/10.1021/nl802096a
[6] Yuan, Z.-Y. and Su, B.-L. (2004) Titanium Oxide Nanotubes, Nanofibers and Nanowires. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 241, 173-183. https://doi.org/10.1016/j.colsurfa.2004.04.030
[7] Aydil, E.S. and Liu, B. (2009) Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 131, 3985-3990. https://doi.org/10.1021/ja8078972
[8] Ou, H. and Lo, S. (2007) Review of Titania Nanotubes Synthesized via the Hydrothermal Treatment: Fabrication, Modification, and Application. Separation and Purification Technology, 58, 179-191. https://doi.org/10.1016/j.seppur.2007.07.017
[9] Su, C., Hong, B.Y. and Tseng, C.M. (2004) Sol-Gel Preparation and Photocatalysis of Titanium Dioxide. Catalysis Today, 96, 119-126. https://doi.org/10.1016/j.cattod.2004.06.132
[10] Grimes, C.A., Gong, D.W., Varghese, O.K., et al. (2016) Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation. Journal of Materials Research, 16, 3331-3334. https://doi.org/10.1557/JMR.2001.0457
[11] Guo, M., Xia, X., Gao, Y., Jiang, G., Deng, Q. and Shao, G. (2012) Self-Aligned TiO2 Thin Films with Remarkable Hydrogen Sensing Functionality. Sensors and Actuators B: Chemical, 171-172, 165-171. https://doi.org/10.1016/j.snb.2012.02.072
[12] Zheng, Y.Q., Shi, E.W., Chen, Z.W., Li, W.W. and Hu, X.W. (2001) Influence of Solution Concentration on the Hydrothermal Preparation of Titania Crystallites. Journal of Materials Chemistry, 11, 1547-1551. https://doi.org/10.1039/b009203g