脱除柴油车尾气NOx的催化剂制备简述
Catalyst Preparation on NOx Removal from Diesel Exhaust
DOI: 10.12677/HJCET.2017.71006, PDF, HTML, XML, 下载: 1,753  浏览: 5,157 
作者: 刘 佳:托普索催化剂(天津)有限公司,天津;解 田, 胡 宏:中低品位磷矿及其共伴生资源高效利用国家重点实验室,贵州 福泉;瓮福(集团)有限责任公司,贵州 福泉
关键词: 催化剂柴油车尾气Catalyst Diesel Exhaust
摘要: 柴油车热效高,功率大,具有良好的经济性和可靠性,所以柴油车的生产现已得到突飞猛进的发展。但柴油车尾气的排放破坏了大气的臭氧层,造成了环境污染,对柴油车尾气的净化处理势在必行。介绍了脱除柴油车尾气NOx催化剂的生产工艺,催化原理及催化剂的组成,并在模拟装置上活性测试。产品满足国Ⅳ排放标准。
Abstract: Diesel has a good economy and reliability, with a high thermal energy efficiency and a large power, so a large of diesel is produced. However, diesel exhaust destroys O3 atmosphere and causes environmental pollution. It is imperative to purify diesel exhaust. We elaborate catalyst preparation process, principle and composition on NOx removal from diesel exhaust. Moreover, their activities are characterized by a simulated rig. The product reaches National IV emission standards.
文章引用:刘佳, 解田, 胡宏. 脱除柴油车尾气NOx的催化剂制备简述[J]. 化学工程与技术, 2017, 7(1): 38-42. http://dx.doi.org/10.12677/HJCET.2017.71006

参考文献

[1] Kašpar, J., Fornasiero, P. and Hickey, N. (2003) Automotive Catalytic Converters: Current Status and Some Perspectives. Catalysis Today, 77, 419-449. https://doi.org/10.1016/S0920-5861(02)00384-X
[2] Schultz, M.G., Diehl, T., Brasseur, G.P. and Zittel, W. (2003) Air Pollution and Climate-Forcing Impacts of a Global Hydrogen Economy. Science, 302, 624-627. https://doi.org/10.1126/science.1089527
[3] Skalska, K., Miller, J.S. and Ledakowicz, S. (2010) Trends in NOx Abatement: A Review. Science of the Total Environment, 408, 3976-3989. https://doi.org/10.1016/j.scitotenv.2010.06.001
[4] 庞磊, 范驰, 邵丽娜, 等. 制备方法对V2O5/WO3-TiO2催化剂脱除柴油车尾气中NOx的影响[J]. 催化学报, 2014, 35(12): 2020-2028.
[5] 姜烨, 高翔, 吴卫红, 等. V2O5/TiO2催化剂上NH3选择性催化还原NO反应动力学研究[J]. 应用化工, 2012, 41(12): 2047-2049.
[6] Gongshin, Q. and Yang Ralph, T. (2003) Performance and Kinetics Study for Low Temperature SCR of NO with NH3 over MnOx CeO2 Catalyst. Catalysis, 217, 434. https://doi.org/10.1016/S0021-9517(03)00081-2
[7] Kobayashi, M. and Hagi, M. (2006) V2O5 WO3/TiO2 SiO2 Catalysts: Influence of Active Components and Supports on Activities in the Selective Catalytic Reduction of NO by NH3 and in the Oxidation of SO2. Applied Catalysis B: Environmental, 63, 104-113. https://doi.org/10.1016/j.apcatb.2005.09.015
[8] 翟步英, 刘奇, 潘雄. 柴油车尾气净化催化剂发展趋势[J]. 材料导报, 2011, 25(11): 418-421.
[9] 繆明锋, 钟秦, 李云涛, 等. 活性组分含量和复合载体对SCR催化剂脱硝活性的影响[J]. 化工环保, 2011, 31(6): 553-556.
[10] Alemany, L., Lietti, L., Ferlazzo, N., et al. (1995) Reactivity and Physicochemical Characteriazation of V2O5/WO3- TiO2 De-NOX Catalysts. Journal of Catalysis, 155, 117-130. https://doi.org/10.1006/jcat.1995.1193
[11] Bahamonde, A., Beretta, A., Avila, P., et al. (1996) An Experimental and Theoretical Investigation of the Behavior of a Monolithic Ti-V-W Catalyst in the Reduction of NOX with NH3. Industrial & Engineering Chemistry Research, 35, 2516-2521. https://doi.org/10.1021/ie9507179
[12] Wachs, I.E. and Weckhuysen, B.M. (1997) Structure and Reactivity of Surface Vanadium Oxide Species on Oxide Supports. Applied Catalysis A: General, 157, 67-90. https://doi.org/10.1016/S0926-860X(97)00021-5
[13] Madia, G., Elsener, M., Koebel, M. Raimondi, F. and Wokaun, A. (2002) Thermal Stability of Vanadia-Tungsta-Tita- nia Catalysts in the SCR Process. Applied Catalysis B: Environmental, 39, 181-190. https://doi.org/10.1016/S0926-3373(02)00099-1