连续曲线钢箱梁桥车桥耦合动力响应参数分析
Parameter Analysis of Vehicle-Bridge Coupled Dynamic Response Based on Continuous Curve Steel Box Girder Bridge
DOI: 10.12677/HJCE.2017.61008, PDF, HTML, XML, 下载: 1,500  浏览: 2,949  国家自然科学基金支持
作者: 何知银:贵州省都匀公路管理段,贵州 都匀;李德建, 于鹏*:中南大学土木工程学院,湖南 长沙
关键词: 连续曲线钢箱梁车桥耦合动力响应参数分析Continuous Curve Steel Box Beam Vehicle-Bridge Coupled System Dynamic Response Parameter Analysis
摘要: 采用七自由度空间曲梁单元和七自由度车辆模型模拟桥梁和车辆,基于频率功率谱等效的方法模拟桥面不平度,分析了连续曲线钢箱梁的车桥耦合动力响应,建立起车桥耦合系统动力学模型,经自编程序对其进行动力响应研究。结果表明:当桥梁曲率半径小于某定值后,其各项响应量值将迅速增大,且扭矩的动力放大效应要大于弯矩;桥梁位移动力放大系数随横向加载车道数的减小而增大,随纵向车辆行驶间距的增大而增大,但响应量值大大减小。
Abstract: By simulating the bridge with 7-DOF spatial curved beam element and the vehicle with 7-DOF ve-hicle model, the vehicle-bridge coupled dynamic response of continuous curve steel box girder bridge was investigated. As vibration source, the road irregularity was simulated by frequency power spectrum equivalent method. The vehicle-bridge coupled dynamics model was established and its dynamic response was studied by self-compiled program. The results show, when bridge curve radius is less than a fixed value, its various responsive values increase rapidly, and the dynamic magnified factor (DMF) of torque is larger than bending moment; the DMF increases with the decrease of transversal loaded-lane-number and the increase of longitudinal vehicle distance, but corresponding responsive value is greatly reduced.
文章引用:何知银, 李德建, 于鹏. 连续曲线钢箱梁桥车桥耦合动力响应参数分析[J]. 土木工程, 2017, 6(1): 68-75. http://dx.doi.org/10.12677/HJCE.2017.61008

参考文献

[1] Huang, D., Wang, T. and Shahawy, M. (1995) Dynamic Behavior of Horizontally Curved I-Girder Bridges. Computers & Structures, 57, 703-714. https://doi.org/10.1016/0045-7949(95)00061-K
[2] Yoon, K., Park, N., Choi, Y., et al. (2006) Natural Frequencies of Thin-Walled Curved Beams. Finite Elements in Analysis and Design, 42, 1176-1186. https://doi.org/10.1016/j.finel.2006.05.002
[3] Kim, C.W., Kawatani, M. and Kim, K.B. (2005) Three-Dimensional Dynamic Analysis for Bridge-Vehicle Interaction with Roadway Roughness. Computers & Structures, 83, 1627-1645. https://doi.org/10.1016/j.compstruc.2004.12.004
[4] 赵跃宇, 康厚军, 冯锐, 等. 曲线梁研究进展[J]. 力学进展, 2006, 36(2): 170-186.
[5] 黄晓敏, 黄新艺, 卓卫东, 等. 混凝土连续曲线箱梁桥在多车荷载作用下的冲击效应分析[J]. 振动与冲击, 2012, 31(24): 137-142.
[6] 李德建, 戴公连, 曾庆元. 曲线箱梁桥列车-桥梁时变系统空间振动随机分析[J]. 振动工程学报, 2003, 16(3): 125-128.
[7] 安里鹏, 李德建, 胡立华, 等. 高速公路大跨度连续梁桥车桥耦合动力响应与参数影响分析[J]. 应用力学学报, 2015(6): 942-949.
[8] Lee, C.H., Kawatani, M., Kim, C.W., et al. (2006) Dynamic Response of a Monorail Steel Bridge under a Moving Train. Journal of Sound and Vibration, 294, 562-579. https://doi.org/10.1016/j.jsv.2005.12.028
[9] 陈果, 翟婉明. 铁路轨道不平顺随机过程的数值模拟[J]. 西南交通大学学报, 1999, 34(2): 13-17.
[10] 中国机械工业联合会. GB/T 7031-2005 机械振动道路路面谱测量数据报告[S]. 北京: 中国标准出版社, 2006.
[11] 李德建. 土木工程结构分析程序设计原理与应用[M]. 长沙: 中南大学出版社, 2014.
[12] 金晓琼, 王利杰, 邵岩. 不同交通流状态下的车头间距分布[J]. 大连交通大学学报, 2014(1): 33-36.