CSA  >> Vol. 7 No. 1 (January 2017)

    全球量子保密通信技术进展研究
    Technology Development Analysis of Global Quantum Private Communication

  • 全文下载: PDF(7343KB) HTML   XML   PP.74-87   DOI: 10.12677/CSA.2017.71010  
  • 下载量: 2,951  浏览量: 5,255   国家自然科学基金支持

作者:  

李宏欣:解放军外国语学院语言工程系,河南 洛阳;数学工程与先进计算国家重点实验室,河南 郑州;
李 瞻,闫 宝,韩 宇,王 伟:解放军外国语学院语言工程系,河南 洛阳;
山 灵:河南科技大学动物科技学院,河南 洛阳

关键词:
量子保密通信量子密钥分发最新进展产品应用Quantum Private Communication Quantum Key Distribution Latest Development Applications

摘要:

随着互联网信息技术日新月异的发展,人们对于通信保密性的要求越来越高,从而对于加密体制的安全性提出了更高的要求。量子密码的诞生很好的解决了这一问题,目前最理想的量子保密通信,具有理论上的无条件安全性,国内外均引起了广泛关注。本文详细介绍了当前主要量子保密通信实验、量子保密通信网络以及量子保密通信产品三方面的国际最新进展,具有重要的参考价值。

With the rapid development of Information Technology (IT), people pay more attention to the confidentiality of network communications. As a result, higher safety requirement is in urgent need for encryption systems. The birth of quantum cryptography drawing great attention at home and abroad can tackle the problem perfectly, since the ideal quantum private communication possesses theoretically unconditional security. This paper mainly introduces the latest progress on quantum cryptography experiment, quantum cryptography network and quantum cryptography product, possessing important reference value.

文章引用:
李宏欣, 李瞻, 闫宝, 韩宇, 王伟, 山灵. 全球量子保密通信技术进展研究[J]. 计算机科学与应用, 2017, 7(1): 74-87. http://dx.doi.org/10.12677/CSA.2017.71010

参考文献

[1] Fröhlich, B., Yuan, Z.L., et al. (2013) A Quantum Access Network. Nature, 501, 69-72.
https://doi.org/10.1038/nature12493
[2] Yuan, Z.L., et al. (2014) QKD for 10Gb/s Dense Wavelength Division Multiplexing Networks. Applied Physics Letters, 104, 051123.
https://doi.org/10.1063/1.4864398
[3] Rubenok, A., et al. (2013) Real-World Two-Photon Interference and Proof-of-Principle QKD Immune to Detector Attacks. Physical Review Letters, 111, 130501.
https://doi.org/10.1103/PhysRevLett.111.130501
[4] Silva, T. et al. (2013) Proof-of-Principle Demonstration of MDI Quantum Key Distribution Using Polarization Qubits. Physical Review A, 88, 052303.
https://doi.org/10.1103/PhysRevA.88.052303
[5] Tang, Z., et al. (2014) Experimental Demonstration of Polarization Encoding MDI QKD. Physical Review Letters, 112, 190503.
https://doi.org/10.1103/PhysRevLett.112.190503
[6] Liu, Y., et al. (2013) Experimental MDI QKD. Physical Review Letters, 111, 130502.
https://doi.org/10.1103/PhysRevLett.111.130502
[7] Tang, Y.L., et al. (2014) MDI QKD over 200 km. arXiv:1407.8012
[8] Korzh, B., et al. (2014) Provably Secure and Practical QKD over 307km of Optical FIBRE. arXiv:1407.7427
[9] Chen, T.Y., et al. (2009) Field Test of a Practical Secure Communication Network with Decoy-State Quantum cryptography. Optics Express, 17, No. 8.
[10] Chen, T.Y., et al. (2010) Metropolitan All-Pass and Inter-City Quantum Communication Network. Optics Express, 18, No. 26.
https://doi.org/10.1364/OE.18.027217
[11] Morrow, A. et al. (2012) Battelle QKD Test Bed. IEEE Conference on Technologies for Homeland Security, 13-15 November 2012, 162-166.
https://doi.org/10.1109/ths.2012.6459843