具有均一尺寸球形碳气凝胶的制备及其储能研究
Preparation and Stored Energy Performance of Spherical Carbon Aerogels with Uniform Size
DOI: 10.12677/NAT.2017.71001, PDF, HTML, XML, 下载: 1,745  浏览: 2,869  科研立项经费支持
作者: 邓亚磊, 邓 勇, 马永旺, 汪 婕, 计亚军*:上海理工大学理学院化学系,上海
关键词: 碳酸钠催化剂尺寸均一球形碳电化学性能Sodium Carbonate Catalyst Uniform Size Spherical Carbon Electrochemical Performance
摘要: 用不同pH的碳酸钠溶液作为催化剂催化间苯二酚和甲醛的缩聚反应得到有机凝胶,后经高温碳化得到碳气凝胶。采用SEM、TEM和N2吸脱附测试方法对所得材料进行表征,还通过循环伏安法和恒流充放电测试手段对其电化学性能进行详细的研究。SEM测试结果表明,随着pH数值的增加,所得碳气凝胶颗粒的形貌呈现出由独巨体到球形再到独巨体的变化过程,表明通过调节催化剂的pH可以得到不同形态的碳气凝胶,并且当pH为10.49时所得碳气凝胶材料具有尺寸均一的连续球形结构。N2吸脱附测试结果表明所得球形碳气凝胶材料的比表面积可达526.1 m2/g。循环伏安法和恒流充放电法的测试结果表明同独巨体碳气凝胶相比,粒径高度均一的球形碳气凝胶具有更优异的电化学性能,材料的比电容可以达到85.39 F/g,以其构建的超级电容器比电容可以达到76.72 F/g。
Abstract: Different pH values of sodium carbonate solution were used as catalyst for condensation of resorcinol and formaldehyde to obtain organic gels. After high temperature carbonization, the organic gels were transformed to carbon aerogels. The obtained materials were characterized by SEM, TEM and N2 adsorption desorption test. In addition, the electrochemical performance, such as cyclic voltammetry and galvanostatic charging and discharging tests, was also conducted. SEM results show that the morphologies of carbon aerogels exhibit the transformation from sole macrosomia to sphere and eventually to sole macrosomia via elevating the pH value of precursor solution. It can be noted that different forms of carbon aerogels can be obtained via regulating the pH of the precursor solution. Especially, when the pH of sodium carbonate solution is 10.49, the prepared carbon aerogels exhibit spherical structure with uniform particle size. N2 adsorption and desorption tests show that the specific surface area of the spherical carbon can up to 526.1 m2/g. Cyclic voltammetry and galvanostatic charging and discharging tests show that the uniformly spherical carbon aerogels expressed more superior electrochemical performance than that of resulted monolithic based carbon aerogels. The specific capacitance of the spherical carbon aerogels can reach 85.39 F/g. Meanwhile, the specific capacitance of spherical carbon aerogels based supercapacitor can get 76.72 F/g.
文章引用:邓亚磊, 邓勇, 马永旺, 汪婕, 计亚军. 具有均一尺寸球形碳气凝胶的制备及其储能研究[J]. 纳米技术, 2017, 7(1): 1-10. https://doi.org/10.12677/NAT.2017.71001

参考文献

[1] 刘玉荣. 碳材料在超级电容器中的应用[M]. 北京: 国防工业出版社, 2013.
[2] Hou, C.H., Huang, S.C., Chou, P.H., et al. (2015) Removal of Bisphenol A from Aqueous Solutions by Electrochemical Polymerization on a Carbon Aerogel Electrode. Journal of the Taiwan Institute of Chemical Engineers, 12, 103.
[3] Rasines, G., Lavela, P., Macias, C., et al. (2015) On the Use of Carbon Black Loaded Nitrogen-Doped Carbon Aerogel for the Electrosorption of Sodium Chloride from Saline Water. Electrochimica Acta, 170, 154.
https://doi.org/10.1016/j.electacta.2015.04.137
[4] Fang, L.X., Huang, K.J. and Liu, Y. (2015) Novel Electrochemical Dual-Aptamer-Based Sandwich Biosensor Using Molybdenum Disulfide/Carbon Aerogel Composites and Au Nanoparticles for Signal Amplification. Biosensors and Bioelectronics, 71, 171.
https://doi.org/10.1016/j.bios.2015.04.031
[5] Shen, J., Liu, N.P., Ouyang, L., et al. (2011) Hydrogen Storage Property of Nanoporous Carbon Aerogels. High Power Laser and Particle Beams, 23, 1001.
https://doi.org/10.3788/hplpb20112306.1517
[6] Gu, Z.X., Tu, C.N. and Wang, Y. (2015) Preparation of Carbon Aerogels and Adsorption of Uranium(VI) from Aqueous Solution. Acta Physico-Chimica Sinica, 31, 95.
[7] Wang, F., Xu, Y.H., Luo, Z.K., et al. (2014) A Dual Pore Carbon Aerogel Based Air Cathode for a Highly Rechargeable Lithium-Air Battery. Journal of Power Sources, 272, 1061.
https://doi.org/10.1016/j.jpowsour.2014.08.126
[8] Li, C.F., Yang, X.Q. and Zhang, G.Q. (2015) Mesopore-Dominant Activated Carbon Aerogels with High Surface Area for Electric Double-Layer Capacitor Application. Materials Letters, 161, 538.
https://doi.org/10.1016/j.matlet.2015.09.003
[9] Hao, P., Zhao, Z.H., Leng, Y.H., et al. (2015) Graphene-Based Nitrogen Self-Doped Hierarchical Porous Carbon Aerogels Derived from Chitosan for High Performance Supercapacitors. Nano Energy, 15, 9.
https://doi.org/10.1016/j.nanoen.2015.02.035
[10] Zhao, Q.L., Wang, X.Y., Liu, J., et al. (2015) Design and Synthesis of Three-Dimensional Hierarchical Ordered Porous Carbons for Supercapacitors. Electrochimica Acta, 154, 110.
https://doi.org/10.1016/j.electacta.2014.12.052
[11] Jiang, H., Lee, P.S. and Li, C.Z. (2013) 3D Carbon Based Nanostructures for Advanced Supercapacitors. Energy & Environmental Science, 6, 41.
https://doi.org/10.1039/c2ee23284g
[12] Huang, K.J., Wang, L., Zhang, J.Z. and Xing, K. (2015) Synthesis of Molybdenum Disulfide/Carbon Aerogel Composites for Supercapacitors Electrode Material Application. Journal of Electroanalytical Chemistry, 752, 33.
https://doi.org/10.1016/j.jelechem.2015.06.005
[13] Zhu, Y.D., Hu, H.Q., Li, W.C. and Zhang, X. (2007) Resorci-nol-Formaldehyde Based Porous Carbon as an Electrode Material for Supercapacitors. Carbon, 45, 160.
https://doi.org/10.1016/j.carbon.2006.07.010
[14] 李文翠, 胡浩权, 朱玉东, 朱盛维. 常压干燥制备碳气凝胶及其电化学行为的研究[J]. 新型碳材料, 2005, 20(3): 217-222.
[15] Yoshizawa, N., Hatori, H., Soneda, Y., et al. (2003) Structure and Electrochemical Properties of Carbon Aerogels Polymerized in the Presence of Cu2+. Journal of Non-Crystalline Solids, 330, 99-105.
https://doi.org/10.1016/j.jnoncrysol.2003.08.041
[16] Menendez, J.A., Juarez-Perez, E.J. and Ruisanchez, E. (2012) A Microwave-Based Method for the Synthesis of Carbon Xerogel Spheres. Carbon, 50, 3555.
https://doi.org/10.1016/j.carbon.2012.03.027
[17] Wang, J., Shen, L.F., Ding, B., et al. (2014) Fabrication of Porous Carbon Spheres for High Performance Electrochemical Capacitors. RSC Advances, 4, 7538.
https://doi.org/10.1039/c3ra44305a
[18] Xie, M.J., Dong, H.H., Zhang, D.D., Guo, X. and Ding, W. (2011) Simple Synthesis of Highly Ordered Mesoporous Carbon by Self-Assembly of Phenol-Formaldehyde and Block Copolymers under Designed Aqueous Basic/Acidic Conditions. Carbon, 49, 2459-2464.
https://doi.org/10.1016/j.carbon.2011.02.014
[19] Ma, F.W., Sun, L.P., Zhao, H.L., et al. (2013) Supercapacitor Performance of Hollow Carbon Spheres by Direct Pyrolysis of Melamine-Formaldehyde Resin Spheres. Chemical Research in Chinese Universities, 29, 735.
https://doi.org/10.1007/s40242-013-3181-9
[20] Shao, Q.G., Tang, J., Lin, Y.X., et al. (2015) Carbon Nanotube Spaced Graphene Aerogels with Enhanced Capacitance in Aqueous and Ionic Liquid Electrolytes. Journal of Power Sources, 278, 751.
https://doi.org/10.1016/j.jpowsour.2014.12.052
[21] Kumagai, S., Sato, M. and Tashima, D. (2013) Electrical Double-Layer Capacitance of Micro and Mesoporous Activated Carbon Prepared from Rice Husk and Beet Sugar. Electrochimica Acta, 114, 617.
https://doi.org/10.1016/j.electacta.2013.10.060
[22] Sing, K.S.W. (1982) Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface-Area and Porosity. Pure and Applied Chemistry, 54, 2201-2218.
https://doi.org/10.1351/pac198254112201
[23] Yan, C.J., Zou, L.D. and Short, R. (2014) Polyaniline-Modified Activated Carbon Electrodes for Capacitive Deionization. Desalination, 333, 101.
https://doi.org/10.1016/j.desal.2013.11.032
[24] Xu, X.T., Liu, Y., Wang, M., et al. (2016) Hierarchical Hybrids with Microporous Carbon Spheres Decorated Three-Dimensional Graphene Frameworks for Capacitive Applications in Supercapacitor and Deionization. Electrochimica Acta, 193, 88.
https://doi.org/10.1016/j.electacta.2016.02.049
[25] Wang, G.Q., Zhang, J., Kuang, S., et al. (2015) Nitrogen-Doped Hierarchical Porous Carbon as an Efficient Electrode Material for Supercapacitors. Electrochimica Acta, 153, 273.
https://doi.org/10.1016/j.electacta.2014.12.006
[26] Zhao, S.S., Yan, T.T., Wang, H., et al. (2016) High Capacity and High Rate Capability of Nitrogen-Doped Porous Hollow Carbon Spheres for Capacitive Deionization. Applied Surface Science, 369, 460.
https://doi.org/10.1016/j.apsusc.2016.02.085
[27] Zhang, Y.F., Zhang, C.X., Huang, G.X., et al. (2015) Tailoring the Textural Properties of Hierarchical Porous Carbons for Supercapacitors. Materials Letters, 159, 377.
https://doi.org/10.1016/j.matlet.2015.07.020
[28] Saliger, R., Bock, V., Petricevic, R., et al. (1997) High Surface Area Carbon Aerogels for Supercapacitors. Journal of Non-Crystalline Solids, 221, 144.
https://doi.org/10.1016/S0022-3093(97)00411-0
[29] Lamiel, C., Nguyen, V.H., Baynosa, M., Huynh, D.C. and Shim, J.-J. (2016) Hierarchical Mesoporous Carbon Sphere Nickel Cobalt Sulfide Core-Shell Structures and Their Electrochemical Performance. Journal of Electroanalytical Chemistry, 771, 106.
https://doi.org/10.1016/j.jelechem.2016.03.047
[30] Bai, Y., Huang, Z.H., Yu, X.L. and Kang, F. (2014) Graphene Oxide-Embedded Porous Carbon Nanofiber Webs by Electrospinning for Capacitive Deionization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 444, 153.
https://doi.org/10.1016/j.colsurfa.2013.12.053