荒漠短命植物的养分含量与荧光特征初探
The Nutrient Content of Ephemeral Plants and the Response of Chlorophyll Fluorescence to Light in Desert
DOI: 10.12677/IJE.2017.61002, PDF, HTML, XML, 下载: 1,647  浏览: 2,931 
作者: 袁素芬*:广东环境保护工程职业学院,广东 佛山;唐海萍:北京师范大学资源学院,地表过程与资源生态国家重点实验室,北京;孟丽红:赣南师范学院地理与规划学院,江西 赣州
关键词: 荧光叶绿素准噶尔荒漠Fluorescence Nitrogen Content Chlorophyll Dzungaria Desert
摘要: 短命植物作为荒漠植被类群中的独特类型,植物叶片的荧光生理特征和养分含量之间具有极高的相关性。分别选取5种典型短命植物东方旱麦草(Eremopyrum orientale)、卷果涩芥(Malcolmia scorpioides)、狭果鹤虱(Lappula semiglabra)、四齿芥(Tetracme quadricormis)和硬萼软紫草(Arnebiade cumbens)自然生长比较一致的叶片作为研究材料,对叶片的叶绿素和养分含量以及荧光光响应进行了测定。结果表明,短命植物的叶绿素总量为1.24~2.67 mg∙g−1之间,叶绿素a、b含量之比达到5.80~12.86。叶片含N量在3.1%以上,含P量为0.22%~0.30%,含K量在3.15%~6.24%。短命植物的实际光化学量子产量ΦPSII平均在0.4以上,ETR受光强的抑制不明显,当光合有效辐射值超过1400 mol∙m−2∙s−1时,出现下降。
Abstract: Ephemerals, including annual ephemerals and ephemeroid plants, are characterized by short- term growth rhythms and specific biological traits adapted to deserts or temperate broad-leaved deciduous forests. Their fluorescence physical characteristics had a significant correlation with their leaf contents. The chlorophyll content, nutrient content and response of the photosynthetic characteristics to the simulated light environmental changes of five desert ephemerals, Eremopyrum orientale, Malcolmia scorpioides, Lappula semiglabra, Tetracme quadricormis and Arnebiade cumbens, which distributed in Northwestern China, were investigated. The results showed that the chlorophyll content of ephemerals was between 1.24 and 2.67 mg∙g−1, with extremely high chla/ chlb values reaching 5.80 - 12.86. Ephemerals growing in barren desert had extremely high nutrient use efficiency, with leaf nitrogen content all above 3.1%, leaf phosphorus content between 0.22% and 0.30%, and leaf potassium content between 3.15% and 6.24%. The ΦPSII of ephemerals on average was above 0.4. The inhibition effect of high light intensity on electron transport rate (ETR) was not obvious, with the latter decreasing only when PAR was above 1400 mol∙m−2∙s−1.
文章引用:袁素芬, 唐海萍, 孟丽红. 荒漠短命植物的养分含量与荧光特征初探[J]. 世界生态学, 2017, 6(1): 6-15. https://doi.org/10.12677/IJE.2017.61002

参考文献

[1] Richardson, A.D., Duigan, S.P. and Berlyn, G.P. (2002) An Evaluation of Noninvasive Methods to Estimate Foliar Chlorophyll Content. New Phytologist, 153, 185-194. https://doi.org/10.1046/j.0028-646X.2001.00289.x
[2] Marschner, H. (1995) Mineral Nutrition of Higher Plants. Academic Press, London, UK.
[3] Gerdol, R., Iacumin, P., Marchesini, R. and Bragazza, L. (2000) Water and Nutrient-Use Efficiency of a Deciduous Species, Vaccimium myrtillus, and an Evergreen Species, V. vitis-idaea, in a Subalpine Dwarf Shrub Health in the Southern Alps, Italy. Oikos, 88, 19-32. https://doi.org/10.1034/j.1600-0706.2000.880104.x
[4] Cernusak, L.A., Aranda, J., Marshall, J.D. and Winter, K. (2007) Large Variation in Whole-Plant Water-Use Efficiency among Tropical Tree Species. New Phytologist, 173, 294-305. https://doi.org/10.1111/j.1469-8137.2006.01913.x
[5] Heckathorn, S.A., Delucia, E.H. and Zielinski, R.E. (1997) The Contribution of Drought-Related Decreases in Foliar Nitrogen Concentration to Decreases in Photosynthetic Capacity during and after Drought in Prairie Grasses. Physiologia Plantarum, 101, 173-182. https://doi.org/10.1111/j.1399-3054.1997.tb01834.x
[6] Karst, A.L. and Lechowicz, M.J. (2007) Are Correlations among Foliar Traits in Ferns Consistent with Those in the Seed Plants? New Phytologist, 173, 306-312. https://doi.org/10.1111/j.1469-8137.2006.01914.x
[7] Elumalai, S., Bahieldinal, A., Wraith, J.M., Thamir, A.N., William, E.D., Tuan-Hua, D.H. and Rongda, Q. (2000) Improved Biomass Productivity and Water Use Efficiency under Water Deficit Conditions in Transgenic Wheat Constitutively Expressing the Barley HVA1 Gene. Plant Science, 155, 1-9. https://doi.org/10.1016/S0168-9452(99)00247-2
[8] Wang, S.M., Wan, C.G., Wang, Y.R., et al. (2004) The Characteristics of Na+, K+ and Free Proline Distribution in Several Drought Resistant Plants of the Alxa Desert, China. Journal of Arid Environments, 56, 525-539. https://doi.org/10.1016/S0140-1963(03)00063-6
[9] Rohacek, K. (2002) Chlorophyll Fluorescence Parameters: The Definitions, Photosynthetic Meaning and Mutual Relationships. Photosynthetica, 40, 13-29. https://doi.org/10.1023/A:1020125719386
[10] 唐海萍, 颜莉娟, 张新时. 新疆准噶尔盆地生物多样性保育与建立国家荒漠公园的构想[J]. 生物多样性, 2008, 16(6): 618-626.
[11] 袁素芬, 唐海萍. 新疆准噶尔荒漠短命植物群落特征及其水热适应性[J]. 生物多样性, 2010, 18(4): 346-354.
[12] Yuan, S.F., Tang, H.P. and Yan, Y.C. (2009) Photosynthetic Characteristics of Spring Ephemerals in the Desert Ecosystem of Dzungaria Basin, Northwest China. Environmental Earth Science, 59, 501-510. https://doi.org/10.1007/s12665-009-0047-z
[13] 袁素芬, 唐海萍. 准噶尔荒漠3种短命植物气体交换特征的日变化[J]. 生态学报, 2009, 29(4): 1962-1970.
[14] 祖元刚, 张衷华, 王文杰, 杨逢建, 贺海升. 薇甘菊叶和茎的光合特性[J]. 植物生态学报, 2006, 30(6): 998-1004.
[15] Bilger, W. and Bjorkman, O. (1990) Role of the Xanthophyll Cycle in Photoprotection Elucidated by Measurements of Light-Induced Absorbance Changes, Fluorescence and Photosynthesis in Leaves of Hederacanariensis. Photosynthesis Research, 25, 173-185. https://doi.org/10.1007/BF00033159
[16] Michal, K., David, K. and Ladislav, N. (2001) On the Relationship between the Non-Photochemical Quenching of Chlorophyll Fluorescence and Photosystem II Light Harvesting Efficiency. A Repetitive Flash Fluorescence Induction Study. Photosynthesis Research, 68, 141-152. https://doi.org/10.1023/A:1011830015167
[17] 刘家琼, 黎志坚, 蒲锦春, 刘新民, 曾泗弟. 我国沙漠中部地区主要不同生态类型植物脯氨酸的累积, 光合, 呼吸和叶绿素含量[J]. 植物学报, 1988, 30(l): 85-95.
[18] 胡颂平, 梅捍卫, 邹桂花, 刘鸿艳, 刘国兰, 蔡润, 李明寿, 罗利军. 正常与水分胁迫下水稻叶片叶绿素含量的QTL分析[J]. 植物生态学报, 2006, 30(3): 479-486.
[19] 赵甍, 王秀伟, 毛子军. 不同氮素浓度下CO2浓度, 温度对蒙古栎(Quercus mongolica)幼苗叶绿素含量的影响[J]. 植物研究, 2006, 26(3): 337-341.
[20] 周忆堂, 马红群, 梁丽娇, 洪鸿, 胡丽涛, 孙敏, 吴能表. 不同光照条件下长春花的光合作用和叶绿素荧光动力学特征[J]. 中国农业科学, 2008, 41(11): 3589-3595.
[21] 徐新文, 徐海量, 王艳玲, 王晓静, 邱永志, 许波. 盐胁迫对沙漠公路防护林主要固沙植物叶绿素含量的影响[J]. 科学通报, 2008, 53(s2): 96-99.
[22] Eehide, M. and Shigesaburo, J. (1979) Photosynthetic Heterosis in Maize. Japanese Journal of Breeding, 29, 159-165. https://doi.org/10.1270/jsbbs1951.29.159
[23] 翁任宪, 陈清义, 杨秋英. 大豆之光合作用与物质生产特性之研究[J]. 中华农学会报, 1986, 133: 25-31.
[24] Shieh, Y.J. and Liao, W.Y. (1987) Influence of Growth Temperature and Nitrogen Nutrition on Photosynthesis and Nitrogen Metabolism in the Rice Plant. Botanical Bulletin of Academia Sinica, 28, 157-161.
[25] 魏书銮, 丁继洲, 宣有林, 李登科. 核桃叶片的叶绿素含量与光合速率的关系[J]. 北京农业科学, 1994, 12(5): 31-33.
[26] Dwelle, R.B., Hurley, P.J. and Pavek, J.J. (1983) Photosynthesis and Stomatal Conductance of Potato Clones. Plant Physiology, 72, 172-176. https://doi.org/10.1104/pp.72.1.172
[27] Bhagsari, A.S. and Brown, R.H. (1976) Relationship of Net Photosynthesis to Carbon Dioxide Concentration and Leaf Characteristics in Selected Peanut (Arachis) Genotypes. Peanut Science, 3, 10-14. https://doi.org/10.3146/i0095-3679-3-1-3
[28] Lapointe, L. (2001) How Phenology Influence Physiology in Deciduous Forest Spring Ephemerals. Physiologia Plantarum, 113, 151-157. https://doi.org/10.1034/j.1399-3054.2001.1130201.x
[29] 陈佐忠, 黄德华. 自然条件下大针茅草原几种主要植物氮, 磷, 钾, 铁含量的季节动态[J]. 植物生态学与地植物学学报, 1989, 13(4): 325-331.
[30] 宋富强, 曹坤芳. 元江干热河谷植物叶片解剖和养分含量特征[J]. 应用生态学报, 2005, 16(1): 33-38.
[31] 郑淑霞, 上官周平. 黄土高原地区植物叶片养分组成的空间分布格局[J]. 自然科学进展, 2006, 16(8): 965-973.
[32] Werk, K.S., Ehleringer, J., Forseth, I.N. and Cook, C.S. (1983) Photosynthetic Characteristics of Sonoran Desert Winter Annuals. Oecologia, 59, 101-105. https://doi.org/10.1007/BF00388081
[33] Blank, J.L., Olson, R.K. and Vitousek, P.M. (1980) Nutrient Uptake by a Diverse Spring Ephemeral Community. Oecologia, 47, 96-98. https://doi.org/10.1007/bf00541781
[34] Augé, R.M. and Stodola, J.W. (1990) An Apparent Increase in Symplasticwater Contributes to Greater Turgor in Mycorrhizal Roots of Droughted Rosa Plants. New Phytologist, 115, 285-295. https://doi.org/10.1111/j.1469-8137.1990.tb00454.x
[35] Tarafdar, J.C. and Kumar, P. (1996) The Role of Vesicular Arbuscular mycorrhizal Fungi on Crop, Tree and Grasses Grown in an Arid Environment. Journal of Arid Environment, 34, 197-203. https://doi.org/10.1006/jare.1996.0101
[36] Shi, Z.Y., Feng, G., Christie, P. and Li, X.L. (2006) Arbuscular mycorrhizal Status of Spring Ephemerals in the Desert Ecosystem of Junggar Basin, China. Mycorrhiza, 16, 269-275. https://doi.org/10.1007/s00572-006-0041-1
[37] Shi, Z.Y., Zhang, L.Y., Li, X.L. and Christie, P. (2007) Diversity of Arbuscular mycorrhizal Fungi Associated with Desert Ephemerals in Plant Communities of Junggar Basin, Northwest China. Applied Soil Ecology, 35, 10-20. https://doi.org/10.1016/j.apsoil.2006.06.002
[38] 李廷强, 王昌全. 植物钾素营养研究进展[J]. 四川农业大学学报, 2001, 19(3): 281-285.
[39] Sicher, R.C. and Bunce, J.A. (1997) Relationship of Photosynthetic Acclimation to Changes of Rubisco Activity in Field-Grown Winter Wheat and Barley during Growth in Elevated Carbon Dioxide. Photosynthesis Research, 52, 27-38. https://doi.org/10.1023/A:1005874932233
[40] Long, S.P., Zhu, X.G., Naidu, S.L. and Ort, D.R. (2006) Can Improvement in Photosynthesis Increase Crop Yield? Plant, Cell and Environment, 29, 315-330. https://doi.org/10.1111/j.1365-3040.2005.01493.x