La2/3(Ca0.6Ba0.4)MnO3中的磁热效应研究
Magnetocaloric Effect in La2/3(Ca0.6Ba0.4)MnO3
DOI: 10.12677/APP.2017.72006, PDF, HTML, XML,  被引量 下载: 1,587  浏览: 4,085  国家自然科学基金支持
作者: 侯薇薇, 张 旎, 叶晴莹, 王 可, 黄志高:福建师范大学物理与能源学院,福建省量子调控与新能源材料重点实验室,福建 福州
关键词: 钙钛矿锰氧化物磁热效应磁熵变Pervoskite Manganite Magnetocaloric Effect Magnetic Entropy Change
摘要: 采用溶胶–凝胶法制备了La2/3(Ca0.6Ba0.4)MnO3 (简写为LCBMO)靶材,并通过及脉冲激光沉积法(PLD)在石英衬底上制备LCBMO薄膜。研究了块体和薄膜结构LCBMO的结构、磁性和磁热效应。实验结果表明,通过PLD方法可以得到纯相结构的LCBMO 薄膜;温度特性测试表明薄膜结构的LCBMO,其居里温度(260.2 K)比块体材料下降30 K;此外,我们得到了LCBMO体系的磁熵变特性。在外磁场2T、居里温度(TC)附近,块体LCBMO的磁熵变(ΔSM)达到最大值2.1 J/kg∙K;而LCBMO薄膜的ΔSM也在TC附近达到最大值(8.4 mJ/cm3∙K),且在TC附近较宽的温区范围内,ΔSM值均较大,表明这一薄膜体系在宽温区磁制冷工质方面有潜在的应用。
Abstract: La2/3(Ca0.6Ba0.4)MnO3 (named as LCBMO) target was prepared by sol-gel method. LCBMO thin film was deposited onto SiO2 substrate by pulsed laser deposition (PLD) technique. The crystal structure, magnetic properties and magnetocaloric effect were investigated. The experimental results indicate that, pure phase LCBMO thin film can be obtained by PLD technique. M-T measurement results show the Curie temperature (TC) of LCBMO thin film (260.2 K) is lower than that of bulk LCBMO (299.9 K). Moreover, magnetic entropy properties were obtained in LCBMO systems. The maximum values of magnetic entropy change (ΔSM, 2.1 J/kg∙K for bulk LCBMO and 8.4 mJ/cm3∙K for LCBMO thin film) were obtained near TC with H = 2T. Besides, the value of ΔSM is relative large in a wide temperature region near TC, which indicates that the thin film possesses potential application in wide-temperature-range magnetic refrigeration.
文章引用:侯薇薇, 张旎, 叶晴莹, 陈水源, 韩森, 王可, 黄志高. La2/3(Ca0.6Ba0.4)MnO3中的磁热效应研究[J]. 应用物理, 2017, 7(2): 37-42. https://doi.org/10.12677/APP.2017.72006

参考文献

[1] Brück, E. (2005) Developments in Magnetocaloric Refrigeration. Journal of Physics D, 38, R381.
https://doi.org/10.1088/0022-3727/38/23/r01
[2] 郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根. 磁热效应材料的研究进展[J]. 物理学报, 2016(65): 1-34.
[3] Dai, P., Zhang, J., Mook, H.A., Liou, S.-H., Dowben, P.A. and Plummer, E.W. (1996) Experimental Evidence for the Dynamic Jahn-Teller Effect in La0.65Ca0.35 MnO3. Physical Review B, 54, 3694-3697.
https://doi.org/10.1103/PhysRevB.54.R3694
[4] Xu, Q.Y., Gu, K.M., Ling, X.L., et al. (2001) Magnetic Entropy Change in La0.54Ca0.32MnO3-δ. Journal of Applied Physics, 90, 524-526.
https://doi.org/10.1063/1.1379047
[5] 李爱君, 孙红辉, 沈晓芳. La0. 64Ca0. 28Sr0. 02MnO3样品的磁热性能[J]. 材料开发与应用, 2013(28): 79-82.
[6] Bahl, C.R.H., Velázquez, D., Nielsen, K.K., et al. (2012) High Performance Magnetocaloric Perovskitesfor Magnetic Refrigeration. Applied Physics Letters, 100, Article ID: 121905.
https://doi.org/10.1063/1.3695338
[7] Phan, M.H., Yu, S.C., Ulyanov, A.N., et al. (2003) Large Magnetocaloric Effect in Perovskite Manganites Changes of the Magnetic Entropy above 300K. Journal of Materials Science, 21,133-139.
[8] Kumaresavanji, M., Sousa, C.T., Pires, A., Pereira, A.M., Lopes, A.M.L. and Araujo, J.P. (2015) Magnetocaloric Effect in La0.7Ca0.3MnO3 Nanotube Arrays with Broad Working Temperature Span. Journal of Applied Physic, 117, Article ID: 104304.
https://doi.org/10.1063/1.4914410
[9] Morelli, D.T., Mance, A.M., Mantese, J.V. and Micheli, A.L. (1996) Magnetocaloric Properties of Doped Lanthanum Manganite Films. Journal of Applied Physic, 79, 373-375.
https://doi.org/10.1063/1.360840
[10] Zhong, W., Chen, W., Au, C.T. and Du, Y.W. (2003) Dependence of the Magnetocaloric Effect on Oxygen Stoichiometry in Polycrystalline La2/3Ba1/3MnO3−δ. Journal of Magnetism and Magnetic Materials, 261, 238-243.
https://doi.org/10.1016/S0304-8853(02)01479-8
[11] Radaelli, P.G., Cox, D.E., Marezio, M., Cheong, S.-W., Schiffer, P.E. and Ramirez, A.P. (1995) Simultaneous Structural, Magnetic, and Electronic Transitions in La1−xCaxMnO3 with x = 0.25 and 0.50. Physical Review Letters, 75, 4488.
https://doi.org/10.1103/PhysRevLett.75.4488