基于深度学习的高光谱图像分类方法
A Classification Method for Hyperspectral Imagery Based on Deep Learning
DOI: 10.12677/AIRR.2017.61005, PDF, HTML, XML,  被引量 下载: 3,983  浏览: 12,034 
作者: 袁 林*, 胡少兴:北京航空航天大学机械工程及自动化学院,北京;张爱武:首都师范大学资源环境与旅游学院,北京;柴沙陀, 王 兴:青海大学畜牧兽医院,青海 西宁
关键词: 高光谱图像分类深度学习自编码神经网络卷积神经网络Hyperspectral Image Classification Depth Learning Automatic Coding Machine Convolutional Neural Network
摘要: 遥感高光谱成像能够获得丰富的地物光谱信息,这使得在传统的宽波段遥感中不可分辨的物质,在高光谱遥感中可以被分辨出来。高光谱图像具有“图谱合一”的特点,充分的利用高光谱图像中的光谱信息和空间信息是获得精确分类结果的前提。深度学习模型中的自编码神经网络能够实现高维数据的非线性降维,而卷积神经网络(Convolutional Neural Network, CNN)则能够自动的从图像中提取空间特征,基于此,本文提出了一种基于深度学习的Autoencoder-CNN高光谱图像分类方法。首先利用自编码神经网络对高光谱数据进行光谱维的降维,然后将卷积神经网络作为分类器,将待分类像元及其邻域像元一同作为卷积神经网络的输入,实现高光谱图像的空谱联合分类。
Abstract: Remote sensing hyperspectral imaging can obtain abundant spectral information, which provides the possibility for the analysis of high precision terrain. The hyperspectral image has the characteristics of “map in one”, and the full use of spectral information and spatial information in hy- perspectral image is the premise of obtaining accurate classification results. Deep learning stack machine model in automatic encoding (Stack Auto-Encoder SAE) can effectively extract data in nonlinear information, and convolutional neural network (Convolutional Neural Network, CNN) can automatically extract features from the image. Based on this, this paper presents a classification method of hyperspectral images based on deep learning. Firstly, the spectral dimension of the hyperspectral data is reduced using automatic encoding machine, then convolutional neural network is used as the classifier, and the pixel and its neighborhood pixels are classified together as the input of the classifier, so as to realize the hyperspectral image classification with spectral space.
文章引用:袁林, 胡少兴, 张爱武, 柴沙陀, 王兴. 基于深度学习的高光谱图像分类方法[J]. 人工智能与机器人研究, 2017, 6(1): 31-39. https://doi.org/10.12677/AIRR.2017.61005

参考文献

[1] Landgrebe, D. (2002) Hyperspectral Image Data Analysis. Signal Processing Magazine, 19, 17-28. https://doi.org/10.1109/79.974718
[2] Wange, A., Lu, J., Cai, J., Wang, G. and Charm, T.J. (2015) Unsupervised Joint Feature Learning and Encoding for RGB-D Scene Labeling. IEEE Transactions on Image Process, 24, 4459-4473. https://doi.org/10.1109/TIP.2015.2465133
[3] Huges, G. (1968) On the Mean Accuracy of Statistical Pattern Recognizers. IEEE Transactions on Information Theory, 14, 55-63. https://doi.org/10.1109/TIT.1968.1054102
[4] Kuo, B.-C. and Landgrebe, D.A. (2004) Nonparametric Weighted Feature Extraction for Classification for Classification. IEEE Transactions on Geoscience and Remote Sensing, 42, 1096-1105. https://doi.org/10.1109/TGRS.2004.825578
[5] Landgrebe, D.A. (2003) Signal Theory Methods in Multispectral Remote Sensing. Wiley, Hoboken.
[6] Liu, Y., Gu, Y. and Zhang, Y. (2006) Hyperspectral Feature Extraction Using Selective PCA Based on Genetic Algorithm with Subgroups. 1st International Conference on Innovative Computing, Information and Control, Beijing, 30 August-1 September 2006, 652-656.
[7] Zhao, Y., Zhang, L., Li, P. and Huang, B. (2007) Classification of High Spatial Resolution Imagery Using Improved Gaussian Markov Random-Field-Based Texture Features. IEEE Transactions on Geoscience and Remote Sensing, 45, 1458-1468. https://doi.org/10.1109/TGRS.2007.892602
[8] Xu, H., Li, P. and Shen, Y. (2008) The Application of Invariant Moments to High Resolution Remote Sensing Image Classification. Remote Sensing for Land & Resources, 20, 9-13.
[9] Luo, B. and Zhang, L. (2014) Robust Autodual Morphological Profiles for the Classification of High-Resolution Satellite Images. IEEE Transactions on Geoscience and Remote Sensing, 52, 1451-1462. https://doi.org/10.1109/TGRS.2013.2251468
[10] Bengio, Y., Lamblin, P., Popovici, D., et al. (2007) Greedy Layer-Wise Training of Deep Networks. Advances in Neural Information Processing Systems, 19, 153.
[11] Fukushima, K. (1988) Neocognitron: A Hierarchical Neural Network Capable of Visual Pattern Recognition. Neural Networks, 1, 119-130. https://doi.org/10.1016/0893-6080(88)90014-7
[12] LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998) Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86, 2278-2323. https://doi.org/10.1109/5.726791
[13] Taigman, Y., Yang, M., Ranzato, M. and Wolf, L. (2014) DeepFace: Closing the Gap to Human-Level Performance in Face Verification. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 23-28 June 2014, 1701-1708.
[14] Sainath, T.N., Mohamed, A.-R., Kingsbury, B. and Ramabhadran, B. (2013) Deep Convolutional Neural Networks for LVCSR. Proceedings of the 38th IEEE International Conference on Acoustics, Speech, and Signal Processing, Vancouver, 26-31 May 2013, 8614-8618. https://doi.org/10.1109/icassp.2013.6639347
[15] Chen, Y., Lin, Z., Zhao, X., Wang, G. and Gu, Y. (2014) Deep Learning-Based Classification of Hyperspectral Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 2094-2107. https://doi.org/10.1109/JSTARS.2014.2329330
[16] Lawrence, S., Giles, C.L., Tsoi, A.C. and Back, A.D. (1997) Face Recognition: A Convolutional Neural-Network Approach. IEEE Transactions on Neural Networks, 8, 98-113. https://doi.org/10.1109/72.554195