均热烧结方法数值模拟与试验验证
Heat-Balanced Sintering Method Numerical Simulation and Experimental Verification
DOI: 10.12677/SE.2017.71003, PDF, HTML, XML,  被引量 下载: 1,547  浏览: 3,049  国家科技经费支持
作者: 王景甫, 王 哲*, 王银治:北京工业大学环境与能源工程学院,传热强化与过程节能教育部重点实验室,北京
关键词: 烧结过程蓄热模型层状燃烧热分析数值模拟Sintering Process Heat Storage Model Layer Combustion Thermal Analysis Numerical Simulation
摘要: 通过某钢厂实际生产情况对烧结料层进行物料平衡与热平衡计算,研究分析固体燃料分层添加理论方案,从料层顶部至底部依次配比为4.9%、4.3%、3.7%,进而提出固体燃料分层添加的均热烧结方法。利用CFD软件进行数值模拟并利用烧结杯试验验证。以普通烧结过程作为对比试验,对提出的均热燃烧方式进行验证,研究烧结矿成品率、利用系数、转鼓强度、固体燃料消耗和粒径影响。固体燃料分层配比均热烧结方法除可降低固体燃料消耗外,还可以提升利用系数,增大转鼓强度,提高烧结矿成品率。
Abstract: Through a practical production situation, material balance and heat balance of sintering material were calculated. The ratio of solid fuel additives in theory was 4.9%, 4.3% and 3.7% from top to bottom. Then, heat-balanced sintering method was proposed. Numerical simulation is conducted by CFDs, and experimental verification is settled by sintering cup. Comparing the proposed heat- balanced sintering method with normal sintering method, sinter yield, utilization coefficient, the strength of drum, the solid fuel consumption and particle size effects are studied. New method reduced the consumption of solid fuel, meanwhile improved utilization coefficient and sinter yield, and increased the drum strength.
文章引用:王景甫, 王哲, 王银治. 均热烧结方法数值模拟与试验验证[J]. 可持续能源, 2017, 7(1): 18-30. https://doi.org/10.12677/SE.2017.71003

参考文献

[1] 白晨光, 谢皓, 邱贵宝, 等. 烧结料层中的蓄热模型[J]. 重庆大学学报, 2008, 31(9): 1002-1007.
[2] 黄柱成, 江源, 毛晓明, 等. 铁矿烧结中燃料合理分布研究[J]. 中南大学学报: 自然科学版, 2006, 37(5): 884-890.
[3] 李法社, 张小辉, 张家元, 等. 基于料层最高温度控制的铁矿烧结燃料合理分布[J]. 中南大学学报: 自然科学版, 2015, 46(2): 386-393.
[4] Wang, Y.Z., Wang, J.F. and Guo, L.L. (2013) The Chemical Reaction Kinetics Study on Sintering Burden with Different Proportions of Solid Fuel. Applied Mechanics and Materials, 421, 255-259.
https://doi.org/10.4028/www.scientific.net/AMM.421.255
[5] 刘斌, 冯妍卉, 姜泽毅, 等. 烧结床层的热质分析[J]. 化工学报, 2012, 63(5): 1344-1353.
[6] 黎建明, 杨兆祥. 烧结过程数学模型的研究[J]. 烧结球团, 1990(5): l-9.
[7] Yang, W., Ryu, C., Choi, S.M., Choi, E.S., Ri, D.W. and Huh, W. (2004) Mathematical Model of Thermal Processes in an Iron Ore Sintering Bed. Metals and Materials International, 10, 493
https://doi.org/10.1007/bf03027355
[8] Mao, Y.L., Chen, Y. and Qu, Y.L. (2010) Technologies and Measures of Energy Saving and Consumption Reducing in Sintering Procedure. Energy for Metallurgical Industry, 29, 1-4.
[9] Zhou, H., Zhao, J.P., Loo, C.E., et al. (2012) Numerical Modeling of the Iron Ore Sintering Process. ISIJ International, 52, 1550-1558.
https://doi.org/10.2355/isijinternational.52.1550
[10] Zhou, H., Zhao, J.P., Loo, C.E., et al. (2012) Model Prediction of Important Bed and Gas Properties during Iron Ore Sintering. ISIJ International, 52, 2168-2176.
https://doi.org/10.2355/isijinternational.52.2168
[11] 陶文铨. 数值传热学[M]. 第2版. 西安: 西安交通大学出版社, 2001.
[12] 龙红明, 范晓慧, 毛晓明, 姜涛, 陈许玲. 基于传热的烧结料层温度分布模型[J]. 中南大学学报(自然科学版), 2008, 39(3): 436-442.
[13] 陈林根, 夏少军, 谢志辉, 等. 钢铁冶金过程动态数学模型的研究进展[J]. 热科学与技术, 2014, 13(2): 95-125.
[14] Young, R.W. (1977) Dynamic Mathematical Model of Sintering Process. Ironmaking and Steelmaking, 4, 321-324.
[15] Cumming, M.J. and Thurlby, J.A. (1990) Developments in Modeling and Simulation of Iron Ore Sintering. Ironmaking and Steelmaking, 17, 245-248.
[16] Yang, W., Ryu, C. and Choi, S. (2004) Unsteady One-Dimensional Model for a Bed Combustion of Solid Fuels. Proceedings of the Institution of Mechanical Engineers Part A—Journal of Power and Energy, 218, 589-598.
https://doi.org/10.1243/0957650042584348
[17] Yang, W., Ryu, C. and Choi, S. (2006) Combustion Characteristics in an Iron Ore Sintering Bed-Evaluation of Fuel Substitution. Combustion and Flame, 145, 447-463.
https://doi.org/10.1016/j.combustflame.2006.01.005
[18] 李菊香, 涂善东. 考虑局部非热平衡的流体层流横掠多孔介质中恒热流平板的传热分析[J]. 化工学报, 2010, 61(1): 448-451.
[19] Alazmi, B. and Vafai, K. (2001) Analysis of Fluid Flow and Heat Transfer Interfacial Conditions between a Porous Medium and a Fluid Layer. International Journal of Heat and Mass Transfer, 44, 1735-1749.
https://doi.org/10.1016/S0017-9310(00)00217-9
[20] Kim, S.J. and Jang, S.P. (2002) Effects of the Darcy Number, the Prandtl Number, and the Reynolds Number on Local Thermal Non-Equilibrium. International Journal of Heat and Mass Transfer, 45, 3885-3896.
https://doi.org/10.1016/S0017-9310(02)00109-6
[21] Li, M., Mu, Y.T., Zhang, J.Y., et al. (2013) Numerical Simulation and Optimization of Sinter Cooler in Multilayered Burden Distribution. Journal of Central South University, 44, 1228-1234.
[22] Thunman, H. and Leckner, B. (2001) Ignition and Propagation of a Reaction Front in Cross-Current Bed Combustion of Wet Biofuels. Fuel, 80, 473-481.
https://doi.org/10.1016/S0016-2361(00)00127-7