脉冲电流作用下电子风应力模型与计算示例
Electron Wind Stress Model and Calculation Examples under Pulse Current
DOI: 10.12677/CMP.2017.61001, PDF, HTML, XML,  被引量 下载: 1,615  浏览: 4,144  国家自然科学基金支持
作者: 曹富荣*:东北大学材料科学与工程学院,辽宁 沈阳
关键词: 电致塑性脉冲电流电子风力电子风应力Electro-Plasticity Pulse Current Electrion Wind Force Electron Wind Stress
摘要: 电致塑性是利用电场和脉冲电流改善材料塑性的方法。为了揭示脉冲电流作用下的电子风影响塑性的机理,在Conrad电子风力模型的基础上,提出电子风应力模型。在复杂体系的LAZ922 (Mg-Li-Al-Zn)合金中给出电子风应力计算实例。计算发现,基于位错动力学的电子风应力与实际应力十分吻合,而基于量子力学的电子风应力与实际应力相差很大,造成量子力学方法计算值偏低的原因是没有考虑合金中存在的第二相阻碍电子运动的情况。
Abstract: Electro-plasticity (EP) is an approach to improve the plasticity using electric field and electric pulse current. To disclose the mechanism of EP under the pulse current, a new electron wind stress model was proposed based on Conrad’s electron wind force model. Calculation examples were given in a complex system LAZ922 (Mg-9Li-2Al-2Zn) alloy. It is found through calculation that the electron wind stress based on dislocation kinetics is in good agreement with the practical pulse current stress. However, the electron wind stress based on quantum mechanics is too low and differs greatly from the practical pulse current stress. This is because that the influence of the second phases on the movement of electrons is not considered.
文章引用:曹富荣. 脉冲电流作用下电子风应力模型与计算示例[J]. 凝聚态物理学进展, 2017, 6(1): 1-5. https://doi.org/10.12677/CMP.2017.61001

参考文献

[1] Egea, A.J.S., Rojas, H.A.G., Celentano, D.J., Rodriguez, A.T. and Fuentes, L. (2014) Electroplasticity-Assisted Bottom Bending Process. Journal of Materials Processing Technology, 214, 2261-2267. https://doi.org/10.1016/j.jmatprotec.2014.04.031
[2] Roh, J.H., Seo, J.J., Hong, S.T., Kim, M.J., Han, N. and Roth, J.T. (2014) The Mechanical Behavior of 5052-H32 Aluminum Alloys under a Pulsed Electric Current. International Journal of Plasticity, 58, 84-99. https://doi.org/10.1016/j.ijplas.2014.02.002
[3] Stolyarov, V.V. (2013) Influence of Pulse Current on Deformation Behavior during Rolling and Tension of Ti-Ni Alloys. Journal of Alloys and Compounds, 577S, 5274-5276. https://doi.org/10.1016/j.jallcom.2012.04.022
[4] Liu, X., Lan, S.H. and Ni, J. (2013) Experimental Study of Electro-Plastic Effect on Advanced High Strength Steels. Materials Science and Engineering A, 582, 211-218. https://doi.org/10.1016/j.msea.2013.03.092
[5] Antolovich, S.D. and Conrad, H. (2004) The Effects of Electric Currents and Fields on Deformation in Metals, Ceramics, and Ionic Materials: An Interpretive Survey. Materials and Manufacturing Processes, 19, 587-610. https://doi.org/10.1081/AMP-200028070
[6] Conrad, H. (2000) Electroplasticity in Metals and Ceramics. Materials Science and Engineering A, 287, 276-287. https://doi.org/10.1016/S0921-5093(00)00786-3
[7] Cao, F.R., Xia, F., Hou, H.L., Ding, H. and Li, Z.Q. (2015) Effects of High-Density Pulse Current on Mechanical Properties and Microstructure in a Rolled Mg-9.3Li-1.79Al-1.61Zn Alloy. Materials Science and Engineering A, 637, 89-97. https://doi.org/10.1016/j.msea.2015.03.127
[8] 黎文献, 田荣璋. 纯镁的特性及合金化[M]//黄伯云, 李成功, 石力开, 邱冠周, 左铁镛, 编. 中国材料工程大典第4卷. 北京: 化学工业出版社, 2005: 173-174.
[9] Mishra, R.S., Stolyarov, V.V., Echer, C., Valiev, R.Z. and Mukherjee, A.K. (2001) Mechanical Behavior and Superplasticity of a Severe Plastic Deformation Processed Nanocrystalline Ti-6Al-4V alloy. Materials Science and Engineering A, 298, 44-50. https://doi.org/10.1016/S0921-5093(00)01338-1
[10] Friedel, J. (1964) Dislocations. Pergamon Press, Oxford, 331.
[11] http://hyperphysics.phy-astr.gsu.edu/hbase/Tables/fermi.html
[12] Rao, S.I., Varvenne, C., Woodward, C., Parthasarathy, M.D., Senkov, O.N. and Curtin, W.A. (2017) Atomic Simulations of Dislocations in a Model BCC Multicomponent Concentrated Solid Solution Alloy. Acta Materialia, 125, 311-320. https://doi.org/10.1016/j.actamat.2016.12.011