珲春盆地浅层地下水年龄及其水循环特征
The Age and Water Cycle of Shallow Groundwater in Hunchun Basin
DOI: 10.12677/AG.2017.71006, PDF, HTML, XML,  被引量 下载: 1,493  浏览: 3,688  国家科技经费支持
作者: 石旭飞, 赵海卿:中国地质调查局沈阳地质调查中心,辽宁 沈阳
关键词: 地下水年龄地下水循环珲春盆地Tritium Groundwater Age Groundwater Cycle Hunchun Basin
摘要: 利用3H法对珲春盆地浅层地下水年龄进行了计算,为珲春盆地地下水资源管理和水资源环境承载力研究提供依据。结果表明:总体上,珲春盆地浅层地下水年龄均小于30 a,地下水循环交替较强。从山前地带向珲春河河谷地带、从东北向西南方向地下水年龄逐渐从小于10 a增大到大于20 a。年龄为小于10 a、10~20 a、大于20 a的地下水分布面积占珲春盆地总面积的比例分别为51%、42%、7%。七户洞村、平安村、和平村等浅层地下水补给区地下水年龄小于10 a,地下水循环交替强烈;中华村、图鲁村、春景村等浅层地下水径流区地下水年龄为10~20 a,与补给区相比地下水循环交替减弱;八二村、古城村等地是珲春盆地浅层地下水排泄区,地下水年龄大于20 a,地下水循环交替较弱。
Abstract: The 3H method is applied to determine the age of shallow groundwater in Hunchun basin, which provides basis for the study of groundwater resource management and carrying capacity in Hunchun basin. It can be concluded that the age of the shallow groundwater in Hunchun basin is younger than 30 a in general and the groundwater cycle is fast. The age of shallow groundwater increases from less than 10 a to more than 20 a from the piedmont to the Hunchun River valley and from the northeast to the southwest. The groundwater distribution area, with age less than 10 a, between 10~20 and more than 20 a, accounts for 39%, 10% and 51% of the total area of Hunchun basin. The groundwater age of Qihudong village, Pingan village, Heping village which are shallow groundwater recharge area is less than 10 a, which means the groundwater circulation is fastest. The groundwater age of Zhonghua village, Tulu village, Chunjing village which are shallow groundwater runoff area is 10 ~ 20 a, which means the groundwater circulation is slower than the recharge area. The groundwater age of Baer village, Gucheng village which are shallow groundwater discharge area is more than 20 a, which means the groundwater circulation is slower than the recharge area and runoff area.
文章引用:石旭飞, 赵海卿. 珲春盆地浅层地下水年龄及其水循环特征[J]. 地球科学前沿, 2017, 7(1): 50-57. https://doi.org/10.12677/AG.2017.71006

参考文献

[1] Slutsky, A.H. and Yen, B.C. (1997) Amacro-Scale Natural Hydrologic Cycle Water Available Model Journal of Hydrology, 20, 329-347.
https://doi.org/10.1016/S0022-1694(97)00053-X
[2] 王哲成, 张云. 地下水超采引起的地裂缝灾害的研究进展[J]. 水文地质工程地质, 2012, 39(2): 88-93.
[3] 胡建平, 吴士良. 苏锡常城市群地区地下水环境问题[J]. 水文地质工程地质, 1998(4): 5-7.
[4] 池永翔. 福州温泉区地面沉降特点及影响因素分析[J]. 水文地质工程地质, 2009(6): 131-133.
[5] 林黎, 赵苏民, 李丹, 马风如, 李会娟. 深层地热水开采与地面沉降的关系研究[J]. 水文地质工程地质, 2006, 33(3): 34-37.
[6] Clark, I. and Fritz, P. (1997) Environmental Isotopes in Hydrogeology. Lewis Publisher, New York.
[7] Gibson, J.J., Edwards, T.W.D., Birks, S.J., et al. (2005) Progress in Isotope Tracer Hydrology in Canada. Hydrological Processes, 19, 303-327.
https://doi.org/10.1002/hyp.5766
[8] 翟远征, 王金生, 左锐, 滕彦国. 北京平原区第四系含水层中水-岩作用的锶同位素示踪[J]. 科技导报, 2011, 29(6): 17-20.
[9] 石旭飞, 董维红, 李满洲, 张岩. 河南平原浅层地下水年龄[J]. 吉林大学学报(地球科学版), 2012, 42(1): 190-197.
[10] 苗晋祥. 基于同位素的豫北平原浅层地下水形成的认识[J]. 水文地质工程地质, 2010, 37(4): 5-11.
[11] 郭晓东, 赵海卿. 珲春盆地地下水固有脆弱性评价[J]. 节水灌溉, 2014(2): 33-35.
[12] 王举, 王佰友. 珲春盆地地下水化学特征与环境质量评价[J]. 长春工程学院学报(自然科学版), 2004, 5(3): 39-42.
[13] 高淑琴. 河南平原第四系地下水循环模式及其可更新能力评价[D]: [博士学位论文]. 长春: 吉林大学, 2008.
[14] Shaw, B.R. (1977) Evaluation of Distortion of Residuals in Trend Surface Analysis by Clustered Data. Mathematical Geology, 9, 507-517.
https://doi.org/10.1007/BF02100962
[15] Sun, L., Zhou, X., Lu, J., et al. (2003) Climatology, Trend Analysis and Prediction of Sandstorms and Their Associated Dustfall in China. Water, Air, & Soil Pollution: Focus, 3, 41-50.
https://doi.org/10.1023/A:1023213801276
[16] 王福刚. 同位素技术在黄河下游悬河段(河南段)水循环特征研究中的应用[D]: [博士学位论文]. 长春: 吉林大学, 2001.