天然气中H2S快速定量检测研究进展
Research Progress of Quick and Quantitative H2S Detection Methods in Natural Gas
DOI: 10.12677/AAC.2017.71005, PDF, HTML, XML, 下载: 2,071  浏览: 6,330  科研立项经费支持
作者: 李 英, 刘名扬:大连交通大学环境与化学工程学院,辽宁 大连;李 莉, 慕 铮, 赵彤彤:辽宁出入境检验检疫局技术中心,辽宁 大连
关键词: H2S检测天然气标准传感器H2S Detection Natural Gas Standard Test Method Sensor-Based Method
摘要: H2S对天然气的运输、贮存及使用安全会产生破坏性的影响,其含量是天然气检测必不可少的项目,快速准确测定其含量具有极其重要的意义。本文对天然气中H2S检测所用到的国内国际标准进行了总结分析。在此基础上,综述了满足快速定量检测H2S的半导体氧化物、电化学和光学传感器研究进展,比较各种H2S检测传感器的操作标准(如操作原理、检测限、响应时间、检测浓度范围)。最后,探讨各种传感器的不足并指出今后的发展方向。
Abstract: H2S has great effect on the transportation, storage and use safety of natural gas. It is an absolutely necessary measuring project for natural gas quality control. So it has important significance to quickly and precisely monitor H2S content. The summary is made about the present national and international standard test method for H2S in natural gas. Based on these, sensor-based type for quantifying H2S including semiconductor metal oxide, electrochemical and optical sensor are re-viewed. Different quality-assurance parameters (e.g., operating principles, limit of detection, re-sponse time and common operating range of concentration) are evaluated and compared. Finally, the limitations and the future prospects of these sensor-based methods are highlighted.
文章引用:李英, 李莉, 慕铮, 赵彤彤, 刘名扬. 天然气中H2S快速定量检测研究进展[J]. 分析化学进展, 2017, 7(1): 31-38. https://doi.org/10.12677/AAC.2017.71005

参考文献

[1] 张子龙, 白冰, 宋华. 国内硫化氢含量的检测方法浅析[J]. 化学工程师, 2012(4): 34-37.
[2] 雷红琴, 张旭龙, 胡建民, 李芳, 粟有志, 李艳美. 天然气中硫化物检测方法标准的分析探讨[J]. 石油与天然气化工, 2012, 41(4): 422-425.
[3] 全国天然气标准化技术委员会. GB/T 11060.1-2010 天然气含硫化合物的测定 第1部分: 用碘量法测定硫化氢含量[S]. 北京: 中国标准出版社, 2010.
[4] 全国天然气标准化技术委员会. GB/T 11060.2-2008 天然气含硫化合物的测定 第2部分:用亚甲蓝法测定硫化氢含量[S]. 北京: 中国标准出版社, 2008.
[5] 全国天然气标准化技术委员会. GB/T 11060.3-2010 天然气含硫化合物的测定 第3部分: 用乙酸铅反应速率双光路检测法测定硫化氢含量[S]. 北京: 中国标准出版社, 2010.
[6] 全国天然气标准化技术委员会. GB/T 18605.2-2001 天然气中硫化氢含量的测定——醋酸铅反应速率单光路检测法[S]. 北京: 中国标准出版社, 2001.
[7] 全国天然气标准化技术委员会. GB/T 11060.11-2014 天然气含硫化合物的测定 第11部分: 用着色长度检测管法测定硫化氢含量[S]. 北京: 中国标准出版社, 2014.
[8] 全国天然气标准化技术委员会. GB/T 11060.10-2014 天然气含硫化合物的测定 第10部分: 用气相色谱法测定硫化合物[S]. 北京: 中国标准出版社, 2014.
[9] Comini, E., Baratto, C., Concina, I., Faglia, G., Falasconi, M., Ferroni, M., Galstyan,V., Gobbi, E., Ponzoni, A., Vomiero, A., Zappa, D., Sberveglieri, V. and Sberveglieri, G. (2013) Metal Oxide Nanoscience and Nanotechnology for Chemical Sensors. Sensors and Actuators B: Chemical, 179, 3-20. https://doi.org/10.1016/j.snb.2012.10.027
[10] Kim, H.J. and Lee, J.H. (2014) Highly Sensitive and Selective Gas Sensors Using P-Type Oxide Semiconductors: Overview. Sensors and Actuators B: Chemical, 192, 607-627. https://doi.org/10.1016/j.snb.2013.11.005
[11] Fang, G., Liu, Z., Liu, C. and Yao, K. (2000) Room Temperature H2S Sensing Properties and Mechanism of CeO2-SnO2 Sol-Gel Thin Films. Sensors and Actuators B: Chemical, 66, 46-48. https://doi.org/10.1016/S0925-4005(99)00467-0
[12] Chowdhuri, A., Gupta, V. and Sreenivas, K. (2003) Fast Response H2S Gas Sensing Characteristics with Ultra-Thin CuO Islands on Sputtered SnO2. Sensors and Actuators B: Chemical, 93, 572-579. https://doi.org/10.1016/S0925-4005(03)00226-0
[13] Patil, L.A. and Patil, D.R. (2006) HeterocontacType CuO-Modified SnO2 Sensor for the Detection of a ppm Level H2S Gas at Room Temperature. Sensors and Actuators B: Chemical, 120, 316-323. https://doi.org/10.1016/j.snb.2006.02.022
[14] Liu, J., Huang, X., Ye, G., Liu, W., Jiao, Z., Chao, W., Zhou, Z. and Yu, Z. (2003) H2S Detection Sensing Characteristics of CuO/SnO2 Sensor. Sensors, 3, 110-118. https://doi.org/10.3390/s30500110
[15] Choi, S.W., Katoch, A., Zhang, J. and Kim, S.S. (2013) Electrospun Nanofibers of CuO-SnO2 Nanocomposite as Semiconductor Gas Sensors for H2S Detection, Sensors and Actuators B: Chemical, 176, 585-591. https://doi.org/10.1016/j.snb.2012.09.035
[16] Chowdhuri, A., Gupta, V., Sreenivas, K., Kumar, R., Mozumdar, S. and Patanjali, P.K. (2004) Response Speed of SnO2-Based H2S Gas Sensors with CuO Nanoparticles. Applied Physics Letter, 84, 1180-1182. https://doi.org/10.1063/1.1646760
[17] Verma, M.K. and Gupta, V. (2012) A Highly Sensitive SnO2-CuO Multilayered Sensor Structure for Detection of H2S Gas. Sensors and Actuators B: Chemical, 166-167, 378-385. https://doi.org/10.1016/j.snb.2012.02.076
[18] Wagh, M.S., Patil, L.A., Seth, T. and Amalnerkar, D.P. (2004) Surface Cupricated SnO2-ZnO Thick Films as a H2S Gas Sensor. Materials Chemistry and Physics, 84, 228-233. https://doi.org/10.1016/S0254-0584(03)00232-3
[19] Vaishampayan, M.V., Deshmukh, R.G., Walke, P. and Mull, I.S. (2008) Fe-Doped SnO2 Nanomaterial: A Low Temperature Hydrogen Sulfide Gas Sensor. Materials Chemistry and Physics, 109, 230-234. https://doi.org/10.1016/j.matchemphys.2007.11.024
[20] Sukunta, J., Wisitsoraatb, A., Tuantranontb, A., Phanichphantc, S. and Liewhiran, C. (2016) Highly-Sensitive H2S Sensors Based on Flame-Made V-Substituted SnO2 Sensing Films. Sensors and Actuators B: Chemical, 242, 1095-1107. https://doi.org/10.1016/j.snb.2016.09.140
[21] Tanda, N., Washio, J., Ikawa, K., Suzuki, K., Koseki, T. and Iwakura, M. (2007) A New Portable Sulfide Monitor with a Zinc-Oxide Semiconductor Sensor for Daily Use and Field Study. Journal of Dentistry, 35, 552-557. https://doi.org/10.1016/j.jdent.2007.03.003
[22] Chaudhari, G.N., Bende, A.M., Bodade, A.B., Patil, S.S. and Manorama, S.V. (2006) Detection of Liquid Petroleum Gas Using Mixed Nanosized Tungsten Oxide-Based Thick-Film Semiconductor Sensor. Talanta, 69, 187-191. https://doi.org/10.1016/j.talanta.2005.09.024
[23] 胡明江, 王忠. 基于纳米纤维的薄膜型传感器研究[J]. 分析化, 2016, 44(9): 1315-1321.
[24] Pandey, S.K., Kim, K.H. and Tang, K.T. (2012). A Review of Sensor-Based Methods for Monitoring Hydrogen Sulfide. TrAC Trends in Analytical Chemistry, 32, 87-99. https://doi.org/10.1016/j.trac.2011.08.008
[25] Lawrence, N.S., Jiang, L. and Compton, R.G. (2003). Voltammetric Characterization of a N, N-Diphenyl-p-Phenylene- diamine-Loaded Screen-Printed Electrode: A Disposable Sensor for Hydrogen Sulfide. Analytical Chemistry, 75, 2054-2059. https://doi.org/10.1021/ac020728t
[26] Wang, Y., Yan, H. and Wang, E. (2001) The Electrochemical Oxidation and the Quantitative Determination of Hydrogen Sulfide on a Solid Polymer Electrolyte-Based System. Journal of Electroanalytical Chemistry, 497, 163-167. https://doi.org/10.1016/S0022-0728(01)00531-9
[27] Wang, Y., Yan, H. and Wang, E. (2002) Solid Polymer Electrolyte-Based Hydrogen Sulfide Sensor. Sensors and Actuators B: Chemical, 87, 115-121. https://doi.org/10.1016/S0925-4005(02)00227-7
[28] Yu, C., Wang, Y., Hua, K., Xing, W. and Lu, T. (2002) Electrochemical H2S Sensor with H2SO4 Pre-Treated Nafion Membrane as Solid Ppolymer Electrolyte. Sensors and Actuators B: Chemical, 86, 259-265. https://doi.org/10.1016/S0925-4005(02)00200-9
[29] Liang, X., He, Y., Liu, F., Wang, B., Zhong, T., Quan, B. and Lu, G. (2007) Solid-State Potentiometric H2S Densor Combining NASICON with Pr6O11-Doped SnO2 Electrode. Sensors and Actuators B: Chemical, 125, 544-549. https://doi.org/10.1016/j.snb.2007.02.050
[30] Cho, S., Lee, J.S., Jun, J., Kim, S.G. and Jang, J. (2014). Fabrication of Water-Dispersible and Highly Conductive PSS-Doped PANI/Graphene Nanocomposites Using a HighmoleculaWeight PSS Dopant and Their Application in H2S Detection. Nanoscale, 6, 15181-15195. https://doi.org/10.1039/C4NR04413D
[31] Choi, S.J., Jang, B.H., Lee, S.J., Min, B.K., Rothschild, A. and Kim, I.D. (2014). Selective Detection of Acetone and Hydrogen Sulfide for the Diagnosis of Diabetes and Halitosis Using SnO2 Nanofibers Functionalized with Reduced Graphene Oxide Nanosheets. ACS Applied Materials & Interfaces, 6, 2588-2597. https://doi.org/10.1021/am405088q
[32] 唐东林, 王莹, 郭峰, 赵东. 光谱吸收硫化氢气体浓度传感器[J]. 传感技术学报, 2010, 3(4): 458-460.
[33] 唐东林, 柯志军, 代志勇, 窦春霞, 贾品元. 油气田硫化氢气体浓度光纤消逝场传感检测技术[J]. 石油学报, 2016, 37(1): 106-110.
[34] Dong, F., Junaedi, C., Roychoudhury, S. and Gupta, M. (2011) Rapid, Online Quantification of H2S in JP-8 Fuel Reformate Using Near-Infrared Cavity-Enhanced Laser Absorption Spectroscopy. Analytical Chemistry, 83, 4132-4136. https://doi.org/10.1021/ac200300t
[35] Petruci, J.F. Da, S., Wilk, A., Cardoso, A.A. and Mizaikoff, B. (2015) Online Analysis of H2S and SO2 via Advanced Mid-Infrared Gas Sensors. Analytical Chemistry, 87, 9605-9611. https://doi.org/10.1021/acs.analchem.5b02730
[36] Hippler, M. (2015) Cavity-Enhanced Raman Spectroscopy of Natural Gas with Optical Feedback CW-Diode Lasers. Analytical Chemistry, 87, 7803-7809. https://doi.org/10.1021/acs.analchem.5b01462
[37] Jarosz, A.P., Yep, T. and Bulent, M. (2013) Microplate-Based Colorimetric Detection of Free Hydrogen Sulfide. Analytical Chemistry, 85, 3638-3643. https://doi.org/10.1021/ac303543r
[38] Zhang, Z., Chen, Z., Wang, S., Qu, C. and Chen, L. (2014) On-Site Visual Detection of Hydrogen Sulfide in Air Based on Enhancing the Stability of Gold Nanoparticles. ACS Applied Materials Interfaces, 6, 6300-6307. https://doi.org/10.1021/am500564w