一种定常可压缩流动的格子Boltzmann模型
A Lattice Boltzmann Model for the Steady State Compressible Flows
DOI: 10.12677/IJFD.2017.51002, PDF, HTML, XML, 下载: 1,716  浏览: 3,791  国家自然科学基金支持
作者: 闫铂, 王建朝:吉林建筑大学土木工程学院,吉林 长春;闫广武:吉林大学数学学院,吉林 长春
关键词: 格子Boltzmann模型可压缩流动定常格子Boltzmann方程Lattice Boltzmann Model Compressible Flows Steady State Lattice Boltzmann Equation
摘要: 本文给出了一种用于定常可压缩流动的多能级格子Boltzmann模型。我们使用Chapman-Enskog展开和空间多尺度展开技术描述平衡态分布函数的高阶矩和不同空间尺度的系列方程,进而得到了具有高阶误差的Euler方程的修正方程。我们还给出了格子Boltzmann模型的数值模拟结果与解析解的比较。结果表明,数值模拟结果与解析解吻合的很好。
Abstract: In this paper, a multi-energy-level lattice Boltzmann model for the steady state compressible flows is proposed. Firstly, the Chapman-Enskog expansion and the multi-spatial scale expansion are used to describe the higher-order moment of equilibrium distribution functions and a series of partial differential equations in different spatial scales. Secondly, the modified partial differential equation of the Euler equation with the higher-order truncation error is obtained. Thirdly, comparison between numerical results of the lattice Boltzmann models and exact solution is given. The numerical results agree well with the classical one.
文章引用:闫铂, 王建朝, 闫广武. 一种定常可压缩流动的格子Boltzmann模型[J]. 流体动力学, 2017, 5(1): 10-21. https://doi.org/10.12677/IJFD.2017.51002

参考文献

[1] Chen, H.D., Chen, S.Y. and Matthaeus, M.H. (1992) Recovery of the Navier-Stokes Equations Using a Lattice Boltzmann Gas Method. Physical Review A, 45, 5339-5342.
https://doi.org/10.1103/PhysRevA.45.R5339
[2] Koelman, J.M.V.A. (1991) A Simple Lattice Boltzmann Scheme for Navier-Stokes Fluid Flow. Europhysics Letters, 15, 603-607.
https://doi.org/10.1209/0295-5075/15/6/007
[3] Benzi, R., Succi, S. and Vergassola, M. (1992) The Lattice Boltzmann Equations: Theory and Applications. Physics Reports, 222, 147-197.
https://doi.org/10.1016/0370-1573(92)90090-m
[4] Chen, S.Y. and Doolen, G.D. (1998) Lattice Boltzmann Method for Fluid Flows. Annual Review of Fluid Mechanics, 30, 329-364.
https://doi.org/10.1146/annurev.fluid.30.1.329
[5] Shan, X.W. and Chen, H.D. (1994) Simulation of Non-Ideal Gases Liquid Gas Phase Transitions by the Lattice Boltzmann Equation. Physical Review E, 49, 2941.
https://doi.org/10.1103/PhysRevE.49.2941
[6] Filippova, O. and Hanel, D. (1997) Lattice Boltzmann Simulation of Gas Particle Flow in Filters. Computer & Fluids, 26, 697-712.
https://doi.org/10.1016/S0045-7930(97)00009-1
[7] Succi, S., Foti, E. and Higuera, F.J. (1989) 3-Dimensional Flows in Complex Geometries with the Lattice Boltzmann Method. Europhysics Letters, 10, 433.
https://doi.org/10.1209/0295-5075/10/5/008
[8] Ladd, A. (1994) Numerical Simulations of Particle Suspensions via a Discretized Boltzmann Equation. Part 2. Numerical Results. Journal of Fluid Mechanics, 271, 311.
https://doi.org/10.1017/S0022112094001783
[9] Velivelli, A.C. and Bryden, K.M. (2006) Parallel Performance and Accuracy of Lattice Boltzmann and Traditional Finite Difference Methods for Solving the Unsteady Two Dimensional Burger’s Equation. Physica A, 362, 139-145.
https://doi.org/10.1016/j.physa.2005.09.031
[10] Zhang, J.Y. and Yan, G.W. (2008) Lattice Boltzmann Methods for One and Two-Dimensional Burger’s Equation. Physica A: Statistical Mechanics and its Applications, 387, 4771-4786.
[11] Yan, G.W. and Zhang, J.Y. (2009) A Higher-Order Moment Method of the Lattice Boltzmann Model for the Korteweg-Devries Equation. Mathematics and Computers in Simulation, 79, 1554-1565.
https://doi.org/10.1016/j.matcom.2008.07.006
[12] Yan, G.W. and Yuan, L. (2001) Lattice Bhatnagar-Gross-Krook Model for the Lorenz Attractor. Physica D, 154, 43-50.
https://doi.org/10.1016/S0167-2789(01)00224-X
[13] Succi, S. (1993) Lattice Boltzmann Equation for Quantum Mechanics. Physica D, 69, 327-332.
https://doi.org/10.1016/0167-2789(93)90096-J
[14] Palpacelli, S. and Succi, S. (2007) Numerical Validation of the Quantum Lattice Boltzmann Scheme in Two and Three Dimension. Physical Review E, 75, Article ID: 066704.
https://doi.org/10.1103/PhysRevE.75.066704
[15] Zhong, L.H., Feng, S.D., Dong, P. and Gao, S.T. (2006) Lattice Boltzmann Schemes for the Nonlinear Schrodinger Equation. Physical Review E, 74, Article ID: 036704.
https://doi.org/10.1103/PhysRevE.74.036704
[16] Chai, Z.H. and Shi, B.C. (2007) A Novel Lattice Boltzmann Model for the Poisson Equation. Applied Mathematical Modelling, 32, 2050-2058.
[17] Wang, M.R., Wang, J.K. and Chen, S.Y. (2007) Roughness and Cavitations Effect on Electro-Osmotic Flows in Rough Microchannels Using the Lattice Poisson-Boltzmann Methods. Journal of Computational Physics, 226, 836-851.
[18] Alexander, F.J., Chen, H., Chen, S., et al. (1992) Lattice Boltzmann Model for Compressible Fluids. Physical Review A, 46, 1967-1970.
https://doi.org/10.1103/PhysRevA.46.1967
[19] Yu, H.D. and Zhao, K.H. (2000) Lattice Boltzmann Method for Compressible Flows with High Mach Number. Physical Review E, 61, 3867-3870.
https://doi.org/10.1103/PhysRevE.61.3867
[20] Prasiankis, N.I. and Boulouchos, K.B. (2007) Lattice Boltzmann Method for Simulation of Weakly Compressible Flows at Arbitrary Prandtl Number. International Journal of Modern Physics C, 18, 602-609.
https://doi.org/10.1142/S012918310701084X
[21] Nadiga, B.T. (1995) An Euler Solver Based on Locally Adaptive Discrete Velocities. Journal of Statistical Physics, 81, 129-146.
https://doi.org/10.1007/BF02179972
[22] Prendergast, K.H. and Xu, K. (1993) Numerical Hydrodynamics from Gas-Kinetic Theory. Journal of Computational Physics, 109, 53-66.
https://doi.org/10.1006/jcph.1993.1198
[23] Kim, C., Xu, K., Martinelli, L., et al. (1997) Analysis and Implementation of the Gas Kinetic BGK Scheme for Computing Inhomogeneous Fluid Behavior. International Journal for Numerical Methods in Fluids, 25, 21-49.
https://doi.org/10.1002/(SICI)1097-0363(19970715)25:1<21::AID-FLD515>3.0.CO;2-Y
[24] Kotelnikov, A.D. and Montgomery, D.C. (1997) A Kinetic Method for Computing Inhomogeneous Fluid Behavior. Journal of Computational Physics, 134, 364-388.
https://doi.org/10.1006/jcph.1997.5720
[25] Huang, J., Xu, F., Vallieres, M., et al. (1997) A Thermal LBGK Model for Large Density and Temperature Difference. International Journal of Modern Physics C, 8, 827-841.
[26] Renda, A., Bella, G., Succi, S., et al. (1998) Thermo Dydrodynamics Lattice BGK Schemes with Non-Perturbative Equilibrium. Europhysics Letters, 41, 279-283.
https://doi.org/10.1209/epl/i1998-00143-x
[27] Vahala, G., Pavlo, P., Vahala, L., et al. (1998) Thermal Lattice Boltzmann Models (TLBM) for Compressible Flows. International Journal of Modern Physics C, 9, 1247-1261.
[28] De Cicco, M., Succi, S. and Bella, G. (1999) Nonlinear Stability of Compressible Thermal Lattice BGK Model. SIAM Journal on Scientific Computing, 21, 366-377.
https://doi.org/10.1137/S1064827597319805
[29] Palmer, B.J. and Rector, D.R. (2000) Lattice Boltzmann Algorithm for Simulating Thermal Flow in Compressible Fluids. Journal of Computational Physics, 161, 1-20.
https://doi.org/10.1006/jcph.2000.6425
[30] Qu, K., Shu, Q. and Chew, Y.T. (2007) Alternative Method to Construct Equilibrium Distribution Function in Lattice Boltzmann Method Simulation of Inviscid Compressible Flows at High Mach Number. Physical Review E, 75, Article ID: 036706.
https://doi.org/10.1103/PhysRevE.75.036706
[31] Hinton, F.L., Rosenbluth, M.N., Wong, S.K., Lin-Liu, Y.R. and Miller, R.L. (2001) Modified Lattice Boltzmann Method for Compressible Fluid Simulation. Physical Review E, 63, Article ID: 061212.
https://doi.org/10.1103/PhysRevE.63.061212
[32] Gan, Y.B., Xu, A.G., Zhang, G.C., Yu, X.J. and Li, Y.J. (2008) Two-Dimensional Lattice Boltzmann Model for Compressible Flows with High Mach Number. Physica A, 387, 1721-1732.
https://doi.org/10.1016/j.physa.2007.11.013
[33] Ancona, M.G. (1994) Fully-Lagrangian and Lattice Boltzmann Methods for Solving Systems of Conservation Equations. Journal of Computational Physics, 115, 107-120.
https://doi.org/10.1006/jcph.1994.1181
[34] Pan, X.P., Xu, A.G., Zhang, G.C. and Jiang, S. (2007) Lattice Boltzmann Approach to High-Speed Compressible Flows. International Journal of Modern Physics C, 18, 1747-1764.
https://doi.org/10.1142/S0129183107011716
[35] Wang, Y., He, Y.L., Zhao, T.S., Tang, G.H. and Tao, W.Q. (2007) Implicit-Explicit Finite-Difference Lattice Boltzmann Method for Compressible Flows. International Journal of Modern Physics C, 18, 1961-1983.
https://doi.org/10.1142/S0129183107011868
[36] Tsutahara, M., Kataoka, T., Shikata, K. and Takada, N. (2008) New Model and Scheme for Compressible Fluids of the Finite Difference Lattice Boltzmann Method and Direct Dimulations of Aerodynamics Sound. Computers & Fluids, 37, 79-89.
https://doi.org/10.1016/j.compfluid.2005.12.002
[37] Brownlee, R., Gorban, A.N. and Levesly, J. (2007) Stable Simulation of Fluid Flow with High-Reynolds Number Using Ehrenfests’ Steps. Numerical Algorithms, 45, 389-408.
https://doi.org/10.1007/s11075-007-9087-1
[38] Li, Q., He, Y.L., Wang, Y. and Tao, W.Q. (2007) Coupled Double-Distribution-Function Lattice Boltzmann Method for the Compressible Navier-Stokes Equation. Physical Review E, 76, Article ID: 056705.
https://doi.org/10.1103/PhysRevE.76.056705
[39] Sun, C.H. (1998) Lattice Boltzmann Model for High Speed Flows. Physical Review E, 58, 7283-7287.
https://doi.org/10.1103/PhysRevE.58.7283
[40] Junk, M. (1999) Kinetic Schemes in the Case of Low Mach Numbers. Journal of Computational Physics, 151, 947- 968.
https://doi.org/10.1006/jcph.1999.6228
[41] Yan, G.W., Chen, Y.S. and Hu, S.X. (1999) Simple Lattice Boltzmann Model for Simulating Flows with Shock Wave. Physical Review E, 59, 454-459.
https://doi.org/10.1103/PhysRevE.59.454
[42] Mason, R.J. (2000) A Compressible Lattice Boltzmann Model. Bulletin of the American Physical Society, 45, 168-170.
[43] Mason, R.J. (2002) A Multi-Speed Compressible Lattice Boltzmann Model. Journal of Statistical Physics, 107, 385- 400.
https://doi.org/10.1023/A:1014535310153
[44] Kataoka, T. and Tsutahara, M. (2004) Lattice Boltzmann Method for the Compressible Euler Equations. Physical Review E, 69, Article ID: 056702.
https://doi.org/10.1103/PhysRevE.69.056702
[45] Kataoka, T. and Tsutahara, M. (2004) Lattice Boltzmann Method for the Compressible Navier-Stokes Equations with Flexible Specific-Heat Ratio. Physical Review E, 69, Article ID: 035701.
https://doi.org/10.1103/PhysRevE.69.035701
[46] Yan, G.W., Zhang, J.Y., Liu, Y.H. and Dong, Y.F. (2007) A Multi-Energy-Level Lattice Boltzmann Model for the Compressible Navier-Stokes Equations. International Journal for Numerical Methods in Fluids, 55, 41-56.
[47] Yan, G.W. and Yuan, L. (2000) Lattice Boltzmann Model for the Perfect Gas Flows with Near Vacuum Region. Communication in Nonlinear Science and Numerical Simulation, 5, 58-63.
https://doi.org/10.1016/S1007-5704(00)90002-9
[48] Zhang, J.Y., Yan, G.W., Shi, X.B. and Dong, Y.F. (2009) A Lattice Boltzmann Model for the Compressible Euler Equations with Second-Order Accuracy. International Journal for Numerical Methods in Fluids, 60, 95-117.
https://doi.org/10.1002/fld.1883
[49] Yan, G.W. and Zhang, J.Y. (2008) A Multi-Entropy-Level Lattice Boltzmann Model for the One Dimensional Compressible Euler Equations. International Journal of Computational Fluid Dynamics, 22, 383-392.
https://doi.org/10.1080/10618560802119673
[50] Versteeg, H.K. and Malalasekera, W. (1995) An Introduction to Computational Fluid Dynamics. The Finite Volume Method, Longman Group Ltd., London, 1-257.
[51] Harten, A. (1984) On a Class of High Resolution Total Variation Stable Finite Difference Schemes. SIAM Journal on Numerical Analysis, 21, 1-23.
https://doi.org/10.1137/0721001
[52] Harten, A., Engquist, B., Osher, S. and Chakravathy, R. (1997) Uniformly High Order Accurate Essentially Non-Os- cilltory Schemes, III. Journal of Computational Physics, 131, 3-47.
https://doi.org/10.1006/jcph.1996.5632
[53] Zhang, L.T., Wagner, G.J. and Liu, W.K. (2002) A Parallelized Meshfree Method with Boundary Enrichment for Large-Scale CFD. Journal of Computational Physics, 176, 483-506.
https://doi.org/10.1006/jcph.2002.6999
[54] Sethian, J.A. (1995) Theory, Algorithms and Applications of Level Set Methods for Propagating Interface. Acta Numerica, Cambridge University Press, Cambridge, 309-395.
[55] Bernashi, M., Succi, S. and Chen, H. (2001) Accelerated Lattice Schemes for Steady-State Flows Simulations. Journal of Scientific Computing, 16, 135-144.
https://doi.org/10.1023/A:1012230722915
[56] Guo, Z.L., Zhao, T.S. and Shi, Y. (2004) Preconditioned Lattice Boltzmann Method for Steady Flows. Physical Review E, 70, Article ID: 066706.
https://doi.org/10.1103/PhysRevE.70.066706
[57] Wolfram, S. (1986) Cellular Automaton Fluids 1: Basic Theory. Journal of Statistical Physics, 45, 471-518.
https://doi.org/10.1007/BF01021083
[58] Chapman, S. and Cowling, T.G. (1970) The Mathematical Theory of Non-Uniform Gas. Cambridge University Press, Cambridge, 389-575.
[59] Holdych, D.J., Noble, D.R., Georgiadis, J.G., et al. (2004) Truncation Error Analysis of Lattice Boltzmann Methods. Journal of Computational Physics, 193, 595-619.
https://doi.org/10.1016/j.jcp.2003.08.012
[60] Wang, J.P., Qiu, Q.H. and Ogawa, S. (2004) Numerical Simulation of Viscous Supersonic Flows by Finite Spectral ENO Method. Computational Fluid Dynamics Journal, 12, 191-197.