化学活化煤矸石—水泥复合体系水化性能研究
Research on Hydration Properties of Blended Cement Based on Chemically Activated Coal Gangue
DOI: 10.12677/HJCE.2017.62014, PDF, HTML, XML, 下载: 1,619  浏览: 2,311 
作者: 苗春*:上海建科检验有限公司,上海;国家建筑工程材料质量监督检验中心,上海;上海市建筑科学研究院(集团)有限公司,上海
关键词: 煤矸石化学活化火山灰效应水化进程Coal Gangue Chemical Activation The Pozzolanic Effect Hydration Process
摘要: 采用比强度法对化学活化煤矸石—水泥复合体系中活化煤矸石的火山灰效应进行评定;通过测定复合体系Ca(OH)2剩余量和化学结合水量结合X射线衍射分析(X-ray diffraction, XRD)来研究其水化进程。结果表明:化学激发剂的加入降低了体系的Ca(OH)2含量,提高了体系水化初期结合水量;水化初期掺入激发剂体系的Xrd图谱中Ca(OH)2、C2S和C3S等峰值稍低于基准试样,并且二者之间的差值随着龄期的延长而增大,说明激发剂的掺入加速了煤矸石和水泥水化产物Ca(OH)2之间的反应,提高了煤矸石火山灰效应。
Abstract: In this paper, coal gangue is treated by means of chemical activation and hardened cement pastes with activated coal gangue were made. By specific strength concept, the pozzolanic effect of activated coal gangue could be investigated. Through the content of Ca(OH)2 surplus and the amount of chemically combined water, the hydration degree of activated coal gangue-cement system could be investigated. By means of X-ray diffraction (XRD), the hydration process of the cement system with activated coal gangue could be analyzed. The results show that, adding in chemical accelerant, activated coal gangue-cement system shows more profound hydration degree, with lower content of Ca(OH)2 surplus and higher chemically combined water amount. The main hydration products are C-S-H gel, Ca(OH)2 and sulfoaluminate hydrate ettringite. Along with hydration process, the hydration degree deepens gradually. Compared with no chemical activator system, the distribution of hydration products was much larger in this system.
文章引用:苗春. 化学活化煤矸石—水泥复合体系水化性能研究[J]. 土木工程, 2017, 6(2): 128-133. https://doi.org/10.12677/HJCE.2017.62014

参考文献

[1] Konsta-Gdoutos, M.S. and Shah, S.P. (2003) Hydration and Properties of Novel Blended Cements Based on Cement Kiln Dust and Blast Furnace Slag. Cement and Concrete Research, 33, 1269-1276.
[2] Song, S. and Jenning, H.M. (1999) Pore Solution Chemistry of Alkali-Activated Ground Granulated Blast-Furnace Slag. Cement and Concrete Research, 29, 159-170.
[3] 刘瑞芹. 煤矸石的综合利用分析[J]. 现代矿业, 2009(7): 140-142.
[4] 丰曙霞, 王培铭, 刘贤萍. 水泥-煤矸石复合体系水化进程研究[J]. 山东建材, 2007, 28(5): 20-24.
[5] 裘国华. 煤矸石、尾矿代粘土匹配低品位石灰石煅烧水泥熟料试验研究[D]: [博士学位论文]. 杭州: 浙江大学, 2012.
[6] 李化建. 煤矸石-水泥二元胶凝材料水化动力学研究[J]. 土木建筑与环境工程, 2011(S2): 34-37.
[7] 胡曙光, 王晓, 吕林女, 等. 煤矸石对硅酸盐水泥水化历程的影响[J]. 水泥, 2005(8): 5-7.
[8] 王梅, 施惠生. 水泥-煤矸石复合胶凝体系的水化性能和微观结构初探[J]. 水泥技术, 2005(3): 32-35.
[9] 刘贤萍, 王培铭. 硅酸盐水泥熟料-煤矸石混合水泥的界面结构[J]. 硅酸盐学报, 2008, 36(1): 105-112.
[10] He, C., Osback, B. and Makovicky, E. (1995) Pozzolanic Reactions of Six Principal Clay Minerals: Activation, Reactivity Assessments and Technological Effects. Cement and Concrete Research, 25, 1691-1702.
[11] Shi, C.J. and Day, R.L. (2001) Comparison of Different Methods for Enhancing Reactivity of Pozzolans. Cement and Concrete Research, 31, 813-818.
[12] 宋旭艳, 宫晨琛, 李东旭. 不同活化方法对煤矸石胶凝性能的影响[J]. 材料导报, 2004, 18(3): 99-102.
[13] 顾炳伟, 王培铭. 化学激发剂对煤矸石及煤矸石水泥激发作用的比较研究[J]. 新型建筑材料, 2009, 36(5): 12-15.
[14] 杨南如. 碱胶凝材料形成的物理化学基础[J]. 硅酸盐学报, 1996, 24(2): 209-215.
[15] 崔自治. 粉煤灰活化措施研究[J]. 新型建筑材料, 2002(9): 22-25.
[16] 刘贤萍, 王培铭. 活化煤矸石/粉煤灰水泥水化过程及性能差异[J]. 建筑材料学报, 2010, 13(3): 371-375.
[17] 蒲心诚. 应用比强度指标研究活性矿物掺料在水泥与混凝土中的火山灰效应[J]. 混凝土与水泥制品, 1997(3): 6-14.
[18] 郭伟, 李东旭, 陈建华, 杨南如. Na2SO4对煅烧煤矸石的激发效应[J]. 硅酸盐通报, 2008, 27(5): 942-946.