柠檬酸转运载体在蟑螂保幼激素合成中的研究进展
Functional Characterization of Citrate Carrier in the Biosynthesis of Juvenile Hormone in Cockroach
DOI: 10.12677/BP.2017.71001, PDF, HTML, XML, 下载: 1,961  浏览: 3,071 
作者: 张士成:河北大学生命科学学院,河北 保定;中国科学院动物研究所,北京;黄娟:中国科学院动物研究所,北京
关键词: 柠檬酸转运载体保幼激素咽侧体RNAiCitrate Carrier Juvenile Hormone Corpora allata RNAi
摘要: 目的:研究太平洋折翅蠊(Diploptera punctata)中一种柠檬酸转运载体(Citrate carrier, CiC)在保幼激素(juvenile hormone, JH)合成通路中的功能,探讨该CiC与JH合成的关系,为针对保幼激素途径进行的新型害虫防治提供理论依据。方法:以太平洋折翅蠊为研究对象,利用荧光定量PCR技术对CiC在不同器官及咽侧体不同发育时期的表达量进行分析。结果:柠檬酸转运载体在合成保幼激素的主要场所咽侧体(Corpora allata, CA)中表达量最高,其次是脂肪体(Fat body, Fb)。在雌性蟑螂交配后0~7天内,咽侧体中CiC表达量与JH释放量成正相关。利用RNA干扰(RNA interference, RNAi)技术对JH合成关键酶3-羟基- 3-甲基戊二酸单酰辅酶A还原酶和保幼激素酸甲基转移酶基因进行干扰后,CiC表达量明显下调。结论:CiC与JH合成通路密切相关,其可能是通过介导乙酰辅酶A由线粒体到细胞质的跨膜运输,影响JH的从头合成。
Abstract: Purpose: To determine the function of Citrate carrier (CiC) in the biosynthesis of Juvenile hormone in cockroach, D. punctata, and build a basic theory for pest control. Methods: The expression profile and tissue distribution of CiC were determined by qRT-PCR. Furthermore, the relationship between JH biosynthesis and CiC were investigated by knocking down the essential genes in JH biosynthesis pathway using RNAi. Results: CiC has the highest expression level in CA, which is the biosynthetic site of JH, and followed by Fb. CiC expression pattern in CA corresponds with JH biosynthesis in the CA of 0 - 7d after mated female. There is a down regulation in CiC expression after knocking down the 3-hydroxy-3-methylglutaryl coenzyme-A reductase and Juvenile hormone acid methyl transferase, two key genes that play essential roles in JH biosynthesis. Conclusion: Our result suggested CiC was involved in JH biosynthesis pathway, probably by mediating the transmembrane transport of Acetyl-CoA. Further investigate was needed to determine the accurate function of CiC.
文章引用:张士成, 黄娟. 柠檬酸转运载体在蟑螂保幼激素合成中的研究进展[J]. 生物过程, 2017, 7(1): 1-7. https://doi.org/10.12677/BP.2017.71001

参考文献

[1] Fernie, A.R., Carrari, F. and Sweetlove, L.J. (2004) Respiratory Metabolism: Glycolysis, the TCA Cycle and Mitochondrial Electron Transport. Current Opinion in Plant Biology, 7, 254-261.
https://doi.org/10.1016/j.pbi.2004.03.007
[2] Kaplan, R.S., Mayor, J.A., Gremse, D.A. and Wood, D.O. (1995) High Level Expression and Characterization of Themitochondrial Citrate Transport Protein from the Yeast Saccharomyces Cerevisiae. Journal of Biological Chemistry, 270, 4108-4114.
https://doi.org/10.1074/jbc.270.8.4108
[3] Palmieri, F., Stipani, I., Quagliariello, E. and Klingenberger, M. (1972) Kinetic Study of the Tricarboxylate Carrier in Rat Liver Mitochondria. European Journal of Biochemistry, 26, 587-594.
https://doi.org/10.1111/j.1432-1033.1972.tb01801.x
[4] Zara, V., Iacobazzi, V., Siculella, L., Gnoni, G.V. and Palmieri, F. (1996) Purification and Characterization of the Tricarboxylate Carrier from Eel Liver Mitochondria. Biochemical and Biophysical Research Communications, 223, 508-513.
https://doi.org/10.1006/bbrc.1996.0925
[5] Bisaccia, F., De Palma, A. and Palmieri, F. (1989) Identification and Purification of the Tricarboxylate Carrier from Rat Liver Mitochondria. Biochimicaet Biophysica Acta, 977, 171-176.
https://doi.org/10.1016/S0005-2728(89)80068-4
[6] Kaplan, R.S., Mayor, J.A., Johnston, N. and Oliveira, D.L. (1990) Purification and Characterization of the Reconstitutively Active Tricarboxylate Transporter from Rat Liver Mitochondria. Journal of Biological Chemistry, 265, 13379- 13385.
[7] Kaplan, R.S., Mayor, J.A. and Wood, D.O. (1993) The Mitochondrial Tricarboxylate Transport Protein. cDNA Cloning, Primary Structure, and Comparison with Other Mitochondrial Transport Proteins. Journal of Biological Chemistry, 268, 13682-13690.
[8] Zara, V., Dolce, V., Capobianco, L., Ferramosca, A., Papatheodorou, P., Rassow, J. and Palmieri, F. (2007) Biogenesis of Eel Liver Citrate Carrier (CIC): Negative Charges Can Substitute for Positive Charges in the Presequence. Journal of Molecular Biology, 365, 958-967.
https://doi.org/10.1016/j.jmb.2006.10.077
[9] Hiruma, K. and Kaneko, Y. (2013) Hormonal Regulation of Insect Metamorphosis with Special Reference to Juvenile Hormone Biosynthesis. Current Topics in Developmental Biology, 103, 73-100.
https://doi.org/10.1016/B978-0-12-385979-2.00003-4
[10] Shelby, J.A, Madewell, R and Moczek, A.P. (2007) Juvenile Hormone Mediates Sexual Dimorphism in Horned Beetles. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 308, 417-427.
https://doi.org/10.1002/jez.b.21165
[11] Riddiford, L.M., Truman, J.W., Mirth, C.K. and Shen, Y.C. (2010) A Role for Juvenile Hormone in the Prepupal Development of Drosophila Melanogaster. Development, 137, 1117-1126.
https://doi.org/10.1242/dev.037218
[12] Huang, J. (2014) Juvenile Hormone Biosynthesis in the Cockroach, Diploptera Punctata: The Characterization of the Biosynthetic Pathway and the Regulatory Roles of Allatostatins and NMDA Receptor. Ph.D. Thesis, University of Toronto, Toronto.
[13] Couillaud, F. and Feyereisen, R. (1991) Assay of HMG-CoA Synthase in Diploptera Punctata Corpora Allate. Insect Biochemistry and Molecular Biology, 21, 131-135.
[14] Huizing, M., Ruitenbeek, W., van den Heuvel, L.P., Dolce, V., Iacobazzi, V., Smeitink, Jan A.M., Palmieri, F. and Frans Trijbels, J.M. (1998) Human Mitochondrial Transmembrane Metabolite Carriers: Tissue Distribution and Its Implication for Mitochondrial Disorders. Journal of Bioenergetics and Biomembranes, 30, 277-284.
https://doi.org/10.1023/A:1020501021222
[15] Huang, J., Marchal, E., Hult, E.F. and Tobe, S.S. (2015) Characterization of the Juvenile Hormone Pathway in the Viviparous Cockroach, Diploptera punctata. PLoS One, 10, e0117291.
https://doi.org/10.1371/journal.pone.0117291