柠檬酸法制备BiNbO4陶瓷及其相变和介电性能研究
The Phase Transition and Dielectric Performance of BiNbO4 Ceramics Prepared by a Citrate Method
DOI: 10.12677/MS.2017.72019, PDF, HTML, XML, 下载: 1,530  浏览: 5,694  国家自然科学基金支持
作者: 翟海法, 张盼盼, 石丹丹, 何奕晓, 杨纪恩, 刘海瑞, 刘志勇:河南师范大学物理与电子工程学院,河南省光伏材料重点实验室,河南 新乡
关键词: 柠檬酸法BiNbO4相变介电性能Citrate Method BiNbO4 Phase Transition Dielectric Performance
摘要: 以自制的水溶性过氧化柠檬酸铌为原料,利用柠檬酸法制备BiNbO4介电材料。纯的β相BiNbO4粉体可以在700℃和1050℃获得并在低温β相的BiNbO4粉体中观测到奇异相变:低温β相转变为α相。与同等退火条件的粉体相比,陶瓷样品的结构中存在Bi5Nb3O15晶相残余,这导致陶瓷样品中有气孔出现并有局部的晶粒异常长大。1000℃和1050℃烧结获得的BiNbO4陶瓷比较致密,介电性质随频率和温度变化较小;在1 MHz,1000℃和1050℃烧结BiNbO4陶瓷的介电常数和介电损耗分别为44,0.026和35,0.018。
Abstract: BiNbO4 have been successfully prepared by a citrate method using home-made water-soluble Nb-citrate-peroxide. Pure β-BiNbO4 powders are obtained at 700˚C and 1050˚C respectively, and observed the abnormal phase transition from low temperature β to α phase. Compared to BiNbO4 powders, the ceramic samples have residual Bi5Nb3O15 phase under the same calcination condition, which results in the existence of pores and locally abnormal grain growth in ceramics. The ceramics calcined at 1000˚C and 1050˚C have denser structures and smaller change of dielectric performance versus frequency and temperature. The dielectric permittivity and dielectric loss of BiNbO4 ceramics calcined at 1000˚C and 1050˚C are 44, 0.026 and 35, 0.018 at 1 MHz respectively.
文章引用:翟海法, 张盼盼, 石丹丹, 何奕晓, 杨纪恩, 刘海瑞, 刘志勇. 柠檬酸法制备BiNbO4陶瓷及其相变和介电性能研究[J]. 材料科学, 2017, 7(2): 149-155. https://doi.org/10.12677/MS.2017.72019

参考文献

[1] Kagata, H., Inoue, T., Kato, J. and Kameyama, I. (1992) Low-Fire Bismuth-Based Dielectric Ceramics for Microwave Use. Japanese Journal of Applied Physics, 31, 3152-3155.
https://doi.org/10.1143/JJAP.31.3152
[2] Zhou, D., Wu, W., Wang, H., Jiang, Y.S. and Yao, X. (2007) The Two Element Antennas Using BiNbO4 Ceramics as the Substrate. Materials Science & Engineering A, 460, 652-655.
https://doi.org/10.1016/j.msea.2007.02.050
[3] Kim, E.S. and Choi, W. (2006) Effect of Phase Transition on the Microwave Dielectric Properties of BiNbO4. Journal of the European Ceramic Society, 26, 1761-1766.
https://doi.org/10.1016/j.jeurceramsoc.2005.09.003
[4] Kim, D.M., Kim, S., Kim, K.S., Yoon, S.O. and Park, J.G. (2009) Low-Temperature Sintering and Dielectric Properties of the Bi(Nb1-xTax)O4 System. Journal of Electroceramics, 23, 164-168.
https://doi.org/10.1007/s10832-007-9350-9
[5] Sales, A.J.M., Oliveira, P.W.S., Almeida, J.S., Costa, M.M., Rodrigues, H.O. and Sombra, A.S.B. (2012) Copper Concentration Effect in the Dielectric Properties of BiNbO4 for RF Applications. Journal of Alloys and Compounds, 542, 264-270.
https://doi.org/10.1016/j.jallcom.2012.07.025
[6] Roth, R.S. and Waring, J.L. (1962) Phase Equilibrium Relations in the Binary System Bismuth Sesquioxide-Niobium Pentoxide. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 66A, 451-463.
https://doi.org/10.6028/jres.066A.046
[7] Roth, R.S. and Waring, J.L. (1963) Synthesis and Stability of Bismutotantalite, Stibiotantalite and Chemically Similar ABO4 Compounds. The American Mineralogist, 48, 1348-1356.
[8] Muktha, B., Darriet, J., Madras, G. and Row, T.N.G. (2006) Crystal Structures and Photocatalysis of the Triclinic Polymorphs of BiNbO4 and BiTaO4. Journal of Solid State Chemistry, 179, 3919-3925.
https://doi.org/10.1016/j.jssc.2006.08.032
[9] Zhou, D., Xu, C., He, D.W., Fu, M.S., Guo, J., Zhou, H.F., Pang, L.X. and Yao, X. (2014) Dielectric Properties and Phase Transitions of BiNbO4 Ceramic. Scripta Materialia, 81, 40-43.
https://doi.org/10.1016/j.scriptamat.2014.02.022
[10] Zhou, D., Wang, H., Yao, X., Wei, X.Y., Xiang, F. and Pang, L.X. (2007) Phase Transformation in BiNbO4 Ceramics. Applied Physics Letters, 90, 172910.
https://doi.org/10.1063/1.2732833
[11] Zhai, H.F., Qian, X., Kong, J.Z., Li, A.D., Gong, Y.P., Li, H. and Wu, D. (2011) Abnormal Phase Transition in BiNbO4 Powders Prepared by a Citrate Method. Journal of Alloys and Compounds, 509, 10230-10233.
https://doi.org/10.1016/j.jallcom.2011.08.077
[12] Marcilly, C., Courty, P. and Delmon, B. (1970) Preparation of Highly Dispersed Mixed Oxides and Oxide Solid Solutions by Pyrolysis of Amorphous Organic Precursors. Journal of the American Ceramic Society, 53, 56-57.
https://doi.org/10.1111/j.1151-2916.1970.tb12003.x
[13] Li, A.D., Cheng, J.B., Tang, R.L., Shao, Q.Y., Tang, Y.F., Wu, D. and Ming, N.B. (2006) A Novel Simple Route to Synthesize Aqueous Niobium and Tantalum Precursors for Ferroelectric and Photocatalytic Applications. Mrs Online Proceeding Library, 942, 0924-W04-03.
[14] Choy, J.H., Han, Y.S., Kim, J.T. and Kim, Y.H. (1995) Citrate Route to Ultra-Fine Barium Polytitanates with Microwave Dielectric Properties. Journal of Materials Chemistry, 5, 57-63.
https://doi.org/10.1039/jm9950500057