MS  >> Vol. 7 No. 2 (March 2017)

    乙炔等离子体合成纳米Mg颗粒及贮氢性能研究
    Research on Hydrogen Storage Behavior of Mg Nanoparticles Synthesized by Acetylene Plasma

  • 全文下载: PDF(2211KB) HTML   XML   PP.156-165   DOI: 10.12677/MS.2017.72020  
  • 下载量: 576  浏览量: 695  

作者:  

熊义富,刘 浪,把静文,敬文勇:中国工程物理研究院材料研究所,四川 绵阳;
李星国,陈 军:北京分子科学国家实验室,稀有材料化学与应用国家重点实验室,北京大学化学与分子工程学院,北京

关键词:
纳米化Mg贮氢性能机理Nanocrystallization Magnesium Hydrogen Storage Property Mechanics

摘要:

通过在等离子体蒸发金属Mg的过程中引入乙炔气体,制备了纳米Mg颗粒并进行了贮氢性能研究。结果表明,随着乙炔浓度的提高,制备出的纳米Mg颗粒的尺寸有减小的趋势,但乙炔浓度超过21.7%摩尔浓度时,制备出的纳米Mg颗粒的尺寸不再减小,当乙炔的摩尔浓度为21.7%时,纳米Mg颗粒尺寸为40 nm左右,其比表面积为27.1 m2∙g−1。在473 K,4 MPa氢气压力下1小时可吸氢接近饱和。其吸氢活化能为61.6 kJ∙mol−1 H2,放氢活化能为114 kJ∙mol−1 H2,其吸放氢反应焓为ΔH = −65.5 kJ∙mol−1 H2,反应熵为ΔS = −122.7 J∙K−1∙mol−1 (H2),且在623 K, 4 MPa H2及30次吸放氢循环下,其吸氢容量没有衰减。

Acetylene gas was introduced in Mg metal plasma evaporization for Mg nanoparticles manufacture, and hydrogen storage behavior of Mg nanoparticles was systematically investigated. The results show that Mg nanoparticles’ size decreased with the increase of acetylene concentration. Mg nanoparticles’ size stopped decrease when acetylene concentration exceeded 21.7% molar con-centration. Mg nanoparticles’ size was about 40 nm and specific area was about 27.1 m2∙g−1 when acetylene concentration was 21.7% molar concentration. Hydrogen absorption process could ap-proaching saturation in 1 hour under 4 MPa hydrogen gas at 473 K. Hydrogen absorption activation energy was 61.6 kJ∙mol−1 H2, and hydrogen desorption activation energy was 114 kJ∙mol−1 H2. Hydrogen absorption reaction enthalpy ΔH = −65.5 kJ∙mol−1 H2, and hydrogen absorption reaction entropy ΔS = −122.7 J∙K−1∙mol−1 (H2). Hydrogen absorption capability wasn’t attenuate after 30 times hydrogen absorption/desorption circulation in 4 MPa H2 at 623 K.

文章引用:
熊义富, 刘浪, 把静文, 敬文勇, 李星国, 陈军. 乙炔等离子体合成纳米Mg颗粒及贮氢性能研究[J]. 材料科学, 2017, 7(2): 156-165. https://doi.org/10.12677/MS.2017.72020

参考文献

[1] Zaluski, L., Zaluska, A. and Strom-Olsen, J.O. (1995) Hydrogen Absorption in Nanocrystalline Mg2Ni Form by Me-chanical Alloying. Journal of Alloys and Compounds, 217, 245-249.
https://doi.org/10.1016/0925-8388(94)01348-9
[2] Oeimo, S. and Fujii, H. (1996) Hydriding Properties of the Mg2Ni-H System Synthesized by Reactive Mechanical Grinding. Journal of Alloys and Compounds, 232, L16-L19.
https://doi.org/10.1016/0925-8388(95)02079-9
[3] Berlouis, L.E.A., Cabrera, E., Hall-Barientos, E., et al. (2000) A Thermal Analysis Investgation of the Hydriding Properties of Nanocrystalline Mg-Ni Based Alloys Prepared by High Energy Ball Milling. Journal of Alloys and Compounds, 305, 82-89.
https://doi.org/10.1016/S0925-8388(00)00711-8
[4] Zaluski, L., Zaluska, A. and Strom-Olsen, J.O. (1997) Nanocrystalline Metal Hydrides. Journal of Alloys and Compounds, 253-254, 70-79.
https://doi.org/10.1016/S0925-8388(96)02985-4
[5] Oeimo, S., Fujii, H. and Yoshino, T. (1995) Reactive Me-chanical Grinding of ZrNi under Various Partial Pressures of Hydrogen. Journal of Alloys and Compounds, 217, 287-294.
https://doi.org/10.1016/0925-8388(94)01354-3
[6] Zaluski, L., Zaluska, A. and Ström-Olsen, J.O. (1997) Nanocrystalline Metal Hydrides. Journal of Alloys Compounds, 253-254, 70-79.
https://doi.org/10.1016/S0925-8388(96)02985-4
[7] 熊义富, 敬文勇, 张义涛. 纳米Mg-Ni合金吸放氢过程的热力学性能研究[J]. 稀有金属材料与工程, 2007, 36(1): 138-140.
[8] Liang, G., Huot, J., Boily, S., et al. (1999) Hydrogen Storage Properties of Nanocrystalline Mg1.9Ti0.1Ni Made by Mechanical Alloying. Journal of Alloys Com-pounds, 282, 286-290.
https://doi.org/10.1016/S0925-8388(98)00853-6
[9] Liang, G., Boily, S., Huot, J., et al. (1998) Hydrogen Absorption Properties of a Mechanically Milled Mg-50wt.% LaNi5 Composite. Journal of Alloys Compounds, 268, 302-307.
https://doi.org/10.1016/S0925-8388(97)00607-5
[10] Yamamoto, K., Orimo, S., Fujii, H., et al. (1999) Hydriding Properties of the Heat-Treated MgNi Alloys with Nonostructural Designed Multiphase. Journal of Alloys Compounds, 293-295, 546-551.
https://doi.org/10.1016/S0925-8388(99)00409-0
[11] Friedlmeier, G., Arakawa, M., Hirai, T., et al. (1999) Prep-aration and Structural, Thermal and Hydriding Characteristics of Melt-Spun Mg-Ni Alloys. Journal of Alloys and Compounds, 292, 107-117.
https://doi.org/10.1016/S0925-8388(99)00285-6
[12] Spassov, T. and Köster, U. (1998) Thermal Stability and Hydriding Properties of Nanocrystalline Melt-Spun Mg63Ni30Y7 alloy. Journal of Alloys and Compounds, 279, 279-286.
https://doi.org/10.1016/S0925-8388(98)00680-X
[13] Spassov, T. and Köster, U. (1999) Hydrogenation of Amorphous and Nanocrystalline Mg-Based Alloys. Journal of Alloys and Compounds, 287, 243-250.
https://doi.org/10.1016/S0925-8388(99)00035-3
[14] Tanaka, K., Kanda, Y., Furuhashi, M., et al. (1999) Im-provement of Hydrogen Storage Properties of Melt-Spun Mg-Ni-RE Alloys by Nanocrystallization. Journal of Alloys and Compounds, 293-295, 521-525.
https://doi.org/10.1016/S0925-8388(99)00477-6