张紧的平行钢丝索股在端部转动条件下的弯曲特性试验研究
Experimental Study on Bending Characters of Tensioned Parallel Wire Strands with Rotational End
DOI: 10.12677/IJM.2017.61005, PDF, HTML, XML, 下载: 1,597  浏览: 4,091  国家自然科学基金支持
作者: 沈锐利, 曾发全:西南交通大学桥梁工程系,四川 成都
关键词: 平行钢丝索股模型试验抗弯刚度弯曲应力分层滑移Parallel Wire Strand Model Experiment Bending Stiffness Bending Stress Layering Slippage
摘要: 桥梁缆索结构的弯曲应力对钢丝的疲劳寿命和应力腐蚀有明显影响,但传统的梁弯曲计算方法不能很好反应缆索结构的弯曲特性。通过模型试验对受张拉的平行钢丝索股在端部转动时的弯曲特性研究,试验结果表明:平行钢丝索股的初始张力、端部转角大小对弯曲应力影响明显,而索股有效长度影响不明显。索股钢丝之间在达到最大摩擦力前不发生滑移,抗弯刚度保持不变;随着弯曲曲率增加,沿索股径向和法向扩散出现分层滑移现象,索股截面的整体性降低,抗弯刚度逐渐减小;当索股钢丝全部产生滑移后,端部的抗弯刚度不再变化。
Abstract: The bending stress of bridge cable structure has a distinct effect on fatigue life and stress corro-sion, but traditional calculation method of bending beam cannot well express the bending characters of cable structure. Through the experimental study on bending characters of tensioned parallel wire strands with a rotational end, the results indicate: initial tension and end rotation angle of strand obviously impact on bending stress, but effective strand length influences feebly. The bending stiffness will not change until friction between parallel wires reaches maximum. With layering slippage diffuses along radial and axial directions when bending curvature increases, strand section integrality and bending stiffness decrease gradually. Finally the bending stiffness of strand end maintains invariable after all parallel wires slip.
文章引用:沈锐利, 曾发全. 张紧的平行钢丝索股在端部转动条件下的弯曲特性试验研究[J]. 力学研究, 2017, 6(1): 37-45. https://doi.org/10.12677/IJM.2017.61005

参考文献

[1] Ricciardi, G. and Saitta, F. (2008) A Continuous Vibration Analysis Model for Cables with Sag and Bending Stiffness. Engineering Structures, 30, 1459-1472.
[2] 张巍, 王广政, 孙永明. 考虑抗弯刚度的斜拉索频率与索力分析[J]. 公路交通科技, 2012, 29(7): 64-75.
[3] Nawrocki, A. and Labrosse, M. (2000) A Finite Element Model for Simple Straight Wire Rope Strands. Computers & Structures, 77, 345-359.
[4] 王达, 杨琴, 刘扬. 大跨度悬索桥索股抗弯刚度对锚跨张力测试精度的影响研究[J]. 计算力学学报, 2015, 32(2): 174-179.
[5] 严琨, 沈锐利, 陈卫国, 等. 抗弯刚度对主缆线形的影响[J]. 桥梁建设, 2011(1): 22-25.
[6] 严琨, 沈锐利, 王涛, 等. 基于初弯曲梁单元的大跨度悬索桥主缆弯曲刚度分析[J]. 公路交通科技, 2015, 32(3): 89-95.
[7] Yu, Y., Chen, Z. and Liu, H. (2016) Advanced Approaches to Calculate Recovery Length and Force Redistribution in Semi-Parallel Wire Cables with Broken Wires. Engineering Structures, 131, 44-56.
[8] Lalonde, S., Guilbault, R. and Légeron, F. (2016) Modeling Multilayered Wire Strands, a Strategy Based on 3D Finite Element Beam-to-Beam Contacts-Part I: Model Formulation and Validation. International Journal of Mechanical Sciences.
[9] Foti, F. and Martinelli, L. (2016) An Analytical Approach to Model the Hysteretic Bending Behavior of Spiral Strands. Applied Mathematical Modelling, 40, 6451-6467.
[10] Gimsing, N.J. and Georgakis, C.T. (2012) Cable Supported Bridges: Concept and Design, 3rd Edition, Wiley, Chichester, 148-152.
[11] Montoya, A., Waisman, H. and Betti, R. (2012) A Simplified Contact-Friction Methodology for Modeling Wire Breaks in Parallel Wire Strands. Computers & Structures, 100-101, 39-53.
[12] Chatzis, M.N. and Deodatis, G. (2013) Modeling of Very Large Interacting Multiple-Beam Systems with Application to Suspension Bridge Cables. Journal of Structural Engineering, 139, 1541-1554.
https://doi.org/10.1061/(ASCE)ST.1943-541X.0000740
[13] Wyatt, T.A. (1963) Secondary Stresses in Parallel Wire Suspension Cables. Transactions of the American Society of Civil Engineers, 128, 97-124.