求解抛物方程的MPI并行方法Parallel Methods for Parabolic Equations Based on MPI Implementation

• 全文下载: PDF(802KB)    PP.89-98   DOI: 10.12677/PM.2017.72013
• 下载量: 341  浏览量: 1,369

Many applications in mathematics and engineering involve numerical solutions of partial diffe-rential equations (PDEs). The demands of large-scale computing are quickly increasing in modern science and technology, and parallel computing has received more and more attention. In this paper, the main idea is that classical Group Explicit method (GEM) for parabolic equations, the group explicit method is established briefly and the stability analysis of the method is indicated simply. Then we focus on how to calculate the format in MPI parallel environment. Two parallel MPI algorithms are established and compared with non-parallel algorithm based on GEM. They are MPI block communication (wait communication) and non-blocking communication (no-wait communication). These two MPI schemas both better than one single process to calculate numerical solutions use group explicit method. Also, the non-blocking communication program has higher computational efficiency than blocking communication program.

 [1] 都志辉, 李三立, 陈渔, 刘鹏. 高性能计算之并行编程技术——MPI并行程序设计[M]. 北京: 清华大学出版社, 2001. [2] Quinn, M.J. (2004) Parallel Programming in C with MPI and Open MP. McGraw-Hill, New York. [3] Evans, D.J. and Abdullah, A.R. (1983) Group Explicit Methods for Parabolic Equations. International Journal Computer Mathematics, 14, 73-105. https://doi.org /10.1080/00207168308803377 [4] Saul’yev, V.K. (1965) Integration of Equations of Parabolic Type by the Method of Nets. Proceedings of the Edinburgh Mathematical Society, 14, 247-248. https://doi.org /10.1017/S0013091500008890 [5] Mohd, A., Norhashidah, H. and Khoo, K.T. (2010) Numerical Performance of Parallel Group Explicit Solvers for the Solution of Fourth Order Elliptic Equations. Applied Mathematics and Computation, 217, 2737-2749. [6] Vabishchevich, P.N. (2015) Explicit Schemes for Parabolic and Hyperbolic Equations. Applied Mathematics and Computation, 250, 424-431. [7] 张宝琳. 求解扩散方程的交替分段显-隐式方法[J]. 数值计算与计算机应用, 1991, 4: 245-253. [8] 张武生, 薛巍, 李建江, 郑纬民. MPI并行程序设计实例教程[M]. 北京: 清华大学出版社, 2009. [9] Gorobets, A.V., Trias, F.X. and Oliva, A. (2013) A Parallel MPI + Open MP + Open CL Algorithm for Hybridsuper Computations of Incompressible Flows. Computers & Fluids, 88, 764-772. [10] Kellogg, R.B. (1964) An Alternating Direction Method for Operator Equations. Journal of the Society of Industrial and Applied Mathematics, 12, 7. https://doi.org /10.1137/0112072