高铝褐铁矿直接还原过程中的热力学计算
Thermodynamic Calculation of High Alumina Limonite during the Process of Direct Reduction
DOI: 10.12677/MEng.2017.41002, PDF, HTML, XML, 下载: 1,590  浏览: 3,084 
作者: 郑善举, 郝晓东, 洪益成, 徐立军, 白亚楠:北京钢研新冶工程技术中心有限公司,北京
关键词: 高铝褐铁矿直接还原热力学COHigh Alumina Limonite Direct Reduction Thermodynamics CO
摘要: 通过热力学计算,研究了高铝褐铁矿直接还原过程中的主要氧化物之间的反应热力学规律。计算结果表明:当反应温度为980 K、平衡气相中CO的体积分数为62%时,在直接还原过程中开始生成金属Fe。当体系温度大于1100 K时,反应产物生成的先后顺序为FeO•Al2O3,2FeO•SiO2,FeO•SiO2 。由于直接还原过程中不可避免有FeO的产生,在相同CO体积分数和温度下各氧化物与FeO反应产物的反应活性顺序为FeO•SiO2>2FeO•SiO2>FeO•Al2O3,这会直接影响高铝褐铁矿直接还原过程中铁的金属化率。
Abstract: The thermodynamics of high aluminum limonite during direct reduction was investigated by thermodynamic calculation. The results show that when the reaction temperature was 980 K and the volume fraction of CO was 62%, metal Fe starts generating. When the system temperature is over 1100 K, reaction products were according to following subsequence FeO•Al2O3,2FeO•SiO2,FeO•SiO2,FeO. Due to the inevitable producing of FeO in the process of direct reduction, the reactivity ranking of various reactants under the same volume fraction of CO and temperature is FeO•SiO2>2FeO•SiO2>FeO•Al2O3, which will affect the metallization rate of iron in the direct reduction process of high alumina limonite.
文章引用:郑善举, 郝晓东, 洪益成, 徐立军, 白亚楠. 高铝褐铁矿直接还原过程中的热力学计算[J]. 冶金工程, 2017, 4(1): 6-11. https://doi.org/10.12677/MEng.2017.41002

参考文献

[1] Tang, H.Q., Guo, Z.C. and Zhao, Z.L. (2010) Phosphorus Removal of High Phosphorus Iron Ore by Gas-Based Reduc-tion and Melt Separation. Journal of Iron and Steel Research International, 17, 1-6.
https://doi.org/10.1016/S1006-706X(10)60133-1
[2] Lu, L., Holmes, J. and Manuel, J.R. (2007) Effects of Alumina on Sintering Performance of Hematite Iron Ores. ISIJ International, 47, 349-358.
https://doi.org/10.2355/isijinternational.47.349
[3] Li, L.S., Liu, J.B., Wu, X.R., et al. (2010) Influence of Al2O3 on Equilibrium Sinter Phase in N2 Atmosphere. ISIJ International, 50, 327-329.
https://doi.org/10.2355/isijinternational.50.327
[4] 刘南松. 关于铁矿石优化利用的探讨[J]. 冶金矿山设计与建设, 1996, 28(2): 36-41.
[5] 孙炳泉. 褐铁矿选矿技术进展[J]. 金属矿山, 2006, 4(8): 27-31.
[6] 陈世益, 周芳. 广西高铁低品位三水铝土矿的开发利用研究[J]. 矿物岩石地球通报, 1997, 16(7): 30-31.
[7] 董杰吉, 王广, 李华, 等. 三水铝石型高铝褐铁矿粉烧结液相生成特性[J]. 钢铁, 2014, 49(11): 25-30.
[8] 史志新. 高铝型褐铁矿直接还原工艺相变研究[J]. 冶金分析, 2016, 36(11): 34-40.
[9] 张颖异, 师学峰, 齐渊洪, 等. 基于铝土矿配碳球团还原熔分过程的渣相组成[J]. 钢铁, 2015, 50(2): 17-21.
[10] 张作良, 李强, 高攀, 等. 高铝铁矿石球团气基还原物相状态研究[J]. 中国冶金, 2013, 23(10): 10-13.
[11] 唐向琪, 陈谦德. 贵港式三水铝石矿综合利用方案比较[J]. 轻金属, 1995, 1(2): 1-6.
[12] 叶大伦, 胡建华. 实用无机物热力学数据手册[M]. 北京: 冶金工业出版社, 2002.