国际航空航天科学  >> Vol. 5 No. 1 (March 2017)

基于近似动态规划的三轴卫星姿态最优控制
Optimal Attitude Control of Three-Axis Satellite Based on Approximate Dynamic Programming

DOI: 10.12677/JAST.2017.51004, PDF, HTML, XML, 下载: 1,392  浏览: 3,476  国家自然科学基金支持

作者: 王明泽:北京信息科技大学自动化学院,北京;戈新生:北京信息科技大学理学院,北京

关键词: 姿态控制近似动态规划三轴卫星最优控制神经网络Attitude Control Approximate Dynamic Programming Three-Axis Satellite Optimal Control Neural Network

摘要: 应用近似动态规划方法解决三轴卫星姿态最优轨迹规划问题,首先使用三轴卫星的动力学和运动学模型,对于给定的始末姿态,选取姿态机动能量消耗最少作为待优化的性能指标。文中根据自适应动态规划结构,分别利用评价网络来近似性能指标函数和执行网络来逼近控制变量,龙格库塔法求解状态变量,并给出了适合该类问题的一种效用函数的具体表达式。仿真结果表明应用近似动态规划解得的三轴卫星最优轨迹,能够较好地满足各种约束条件,而且计算精度高、速度快,具有很好的实时性。
Abstract: The optimal attitude trajectory planning of three-axis satellite using approximate dynamic pro-gramming (ADP) method is discussed. Firstly, the dynamic and kinematic equations of the three-axis satellite are used, and for given initial and final attitudes, the performance to be opti-mized is selected as minimizing the rest-to-rest maneuver energy. On grounds of adaptive dynamic programming structure, critic network and action network are used to approximate performance index function and control variables respectively, and Runge-Kutta method to solve the state variables. Besides, a concrete expression of the utility function is provided which is suitable for this kind of problem. The simulation results show that the proposed algorithm satisfies the constraints well and can be used on-line with its small computational amount and low computational complexity.

文章引用: 王明泽, 戈新生. 基于近似动态规划的三轴卫星姿态最优控制[J]. 国际航空航天科学, 2017, 5(1): 27-36. https://doi.org/10.12677/JAST.2017.51004

参考文献

[1] 张化光, 张欣, 罗艳红, 等. 自适应动态规划综述[J]. 自动化学报, 2013, 39(4): 303-311.
[2] 林小峰, 张衡, 宋绍剑, 等. 非线性离散时间系统带ε误差限的自适应动态规划[J]. 控制与决策, 2011, 26(10): 1586-1590.
[3] Al-Tamimi, A., Vrabie, D., Abu-Khalaf, M., et al. (2007) Model-Free Approximate Dynamic Programming Schemes for Linear Systems. International Joint Conference on Neural Networks, Orlando, 12-17 August 2007, 371-378.
[4] Jiang, Y. and Jiang, Z.P. (2013) Global Adaptive Dynamic Programming for Continuous-Time Nonlinear Systems. IEEE Transactions on Automatic Control, 19, 1-13.
[5] Lee, J.Y., Jin, B.P. and Choi, Y.H. (2009) Model-Free Approximate Dynamic Programming for Continuous-Time Linear Systems. IEEE Conference on Decision and Control, Shanghai, 15-18 December 2009, 5009-5014.
[6] Tang, K.W. and Srikant, G. (1997) Reinforcement Control via Action Dependent Heuristic Dynamic Programming. International Conference on Neural Networks, Vol. 3, Houston, 12 June 1997, 1766-1770.
[7] Murray, J.J., Cox, C.J., Lendaris, G. G., et al. (2002) Adaptive Dynamic Programming. IEEE Transactions on Systems Man & Cybernetics Part C Applications & Reviews, 32, 140-153.
https://doi.org/10.1109/TSMCC.2002.801727
[8] Ding, W., Liu, D. and Wei, Q. (2011) Adaptive Dynamic Programming for Finite-Horizon Optimal Tracking Control of a Class of Nonlinear Systems. 30th Chinese Control Conference, Yantai, 22-24 July 2011, 2450-2455.
[9] Liu, D., Wang, D. and Yang, X. (2013) An Iterative Adaptive Dynamic Programming Algorithm for Optimal Control of Unknown Discrete-Time Nonlinear Systems with Constrained Inputs. Information Sciences, 220, 331-342.
https://doi.org/10.1016/j.ins.2012.07.006
[10] Liu, D. (2005) Approximate Dynamic Programming for Self-Learning Control. Automatica, 31, 13-18.
[11] Jiang, Y. and Jiang, Z.P. (2012) Computational Adaptive Optimal Control for Continuous-Time Linear Systems with Completely Unknown Dynamics. Automatica, 48, 2699-2704.
https://doi.org/10.1016/j.automatica.2012.06.096
[12] Wang, D. and Liu, D. (2013) Neuro-Optimal Control for a Class of Unknown Nonlinear Dynamic Systems Using SN-DHP Technique. Neurocomputing, 121, 218-225.
https://doi.org/10.1016/j.neucom.2013.04.006
[13] Zhu, Y., Zhao, D. and Liu, D. (2015) Convergence Analysis and Application of Fuzzy-HDP for Nonlinear Discrete-Time HJB Systems. Neurocomputing, 149, 124-131.
https://doi.org/10.1016/j.neucom.2013.11.055
[14] Si, J. and Wang, Y.T. (2000) On-Line Learning Control by Association and Reinforcement. IEEE Transactions on Neural Networks, 12, 264-276.
https://doi.org/10.1109/72.914523
[15] Wei, Q., Song, R. and Sun, Q. (2015) Nonlinear Neuro-Optimal Tracking Control via Stable Iterative Q-Learning Algorithm. Neurocomputing, 168, 520-528.
https://doi.org/10.1016/j.neucom.2015.05.075
[16] 章仁为. 卫星轨道姿态动力学与控制[M]. 北京: 北京航空航天大学出版社, 1998.
[17] 黄静. 三轴稳定航天器姿态最优控制方法研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2010.
[18] 郭金良. 三轴稳定卫星姿态机动的时间最优控制[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2013.
[19] 安晓风. 卫星相对姿态智能自适应控制及分布式仿真技术研究[D]: [硕士学位论文]. 北京: 北京理工大学, 2016.