微纳结构CaTiO3/TiO2复合材料的制备及生物学性能
Preparation and Biological Evaluation of Micro/Nanostructured CaTiO3/TiO2 Composites
DOI: 10.12677/MS.2017.72026, PDF, HTML, XML, 下载: 1,535  浏览: 2,421  国家自然科学基金支持
作者: 尹 露, 周 杰, 高丽丽, 翁 杰, 冯 波:西南交通大学材料先进技术教育部重点实验室,材料科学与工程学院,四川 成都
关键词: 微纳CaTiO3/TiO2水热反应蛋白吸附成骨细胞Titanium Micro/-Nanostructured CaTiO3/TiO2 Hydrothermal Reaction Protein Adsorption Osteoblasts
摘要: 植入物表面的形貌和成分是影响细胞行为和组织再生的重要因素。采用钙盐和酸的混合液使钛表面形成微孔,再经阳极氧化产生TiO2纳米管层,然后置于Ca(OH)2溶液中水热处理1~4 h,获得具有不同钙含量的钛基微纳结构CaTiO3/TiO2复合材料。通过蛋白吸附和体外成骨细胞培养评价其生物学性能。相对于1 h和4 h,水热反应时间为2 h的CaTiO3/TiO2复合材料具有最强的吸附蛋白能力、成骨细胞显示出最好的增殖行为和最高的成骨活性。具有适当钙含量的三维微纳结构钛CaTiO3/TiO2复合材在硬组织修复替换领域有着良好的应用前景。
Abstract: Surface topography and chemical compositions play important roles in cell behaviors and tissue regeneration. In this work, titanium plates were etched with a mixture of calcium salt and acid to create a micro-porous surface, and then anodized to generate a TiO2 nanotube layer, finally hy-drothermally treated in Ca(OH)2 solution for 1 - 4 h to obtain titanium-based micro/- nanostructured CaTiO3/TiO2 composites with different Ca2+ contents. Biological properties of the composites were evaluated by protein adsorption and osteoblast culture in vitro. The composites by hydrothermal treatment for 2 h show optimal properties to promote protein adsorption, osteoblast proliferation and differentiation. The micro/-nanostructured CaTiO3/TiO2 composite with a suitable content of calcium is a promising candidate of biomaterial for bone replacement.
文章引用:尹露, 周杰, 高丽丽, 翁杰, 冯波. 微纳结构CaTiO3/TiO2复合材料的制备及生物学性能[J]. 材料科学, 2017, 7(2): 204-211. https://doi.org/10.12677/MS.2017.72026

参考文献

[1] Geetha, M., et al. (2009) Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A review. Progress in Materials Science, 54, 397-425.
https://doi.org/10.1016/j.pmatsci.2008.06.004
[2] Lalor, P.A., et al. (1991) Sensitivity to Titanium. A Cause of Implant Failure. Journal of Bone & Joint Surgery British Volume, 73, 25-28.
[3] Olmedo, D., et al. (2003) Macrophages Related to Dental Implant Failure. Implant Dent, 12, 75-80.
https://doi.org/10.1097/01.ID.0000041425.36813.A9
[4] Zheng, X., et al. (2000) Bond Strength of Plasma-sprayed Hydroxyapatite/Ti Composite Coatings. Biomaterials, 21, 841-849.
https://doi.org/10.1016/S0142-9612(99)00255-0
[5] Zhang, P., et al. (2013) Effect of Ti-OH Groups on Microstructure and Bioactivity of TiO2 Coating Prepared by Micro-Arc Oxidation. Applied Surface Science, 268, 381-386.
https://doi.org/10.1016/j.apsusc.2012.12.105
[6] Brammer, K.S., et al. (2009) Improved Bone-Forming Functionality on Diameter-Controlled TiO2 Nanotube Surface. Acta Biomater, 5, 3215-3223.
https://doi.org/10.1016/j.actbio.2009.05.008
[7] Xia, L., et al. (2012) In Vitro and in Vivo Studies of Surface-structured Implants for Bone Formation. International Journal of Nanomedicine, 7, 4873-4881.
https://doi.org/10.2147/IJN.S29496
[8] Le, G.L., et al. (2007) Surface Treatments of Titanium Dental Implants for Rapid Osseointegration. Dental Materials, 23, 844-854.
https://doi.org/10.1016/j.dental.2006.06.025
[9] Ohtsu, N., et al. (2007) CaTiO3 Coating on Titanium for Biomaterial Application: Optimum Thickness and Tissue Response. Journal of Biomedical Materials Research Part A, 82, 304-315.
https://doi.org/10.1002/jbm.a.31136
[10] Wu, S., et al. (2015) Evaluation of the Biocompatibility of a Hydroxyapatite-CaTiO3 Coating in Vivo. Biocybernetics & Biomedical Engineering, 35, 296-303.
https://doi.org/10.1016/j.bbe.2015.05.001
[11] Sugiyama, N., et al. (2009) Bioactive Titanate Nanomesh Layer on The Ti-Based Bulk Metallic Glass by Hydrothermal-Electrochemical Technique. Acta Biomater, 5, 1367-1373.
https://doi.org/10.1016/j.actbio.2008.10.014
[12] Chen, C.Y., et al. (2012) CaTiO3 Nanobricks Prepared From Anodized TiO2 Nanotubes. Electrochemistry Communications, 22, 101-104.
https://doi.org/10.1016/j.elecom.2012.05.012
[13] Serro, A.P., Fernandes, A.C., Saramago, B., Lima, J. and Barbosa, M.A. (1997) Apatite Deposition on Titanium Surfaces. The Role of Albumin Adsorption. Biomaterials, 18, 963-963.
https://doi.org/10.1016/S0142-9612(97)00031-8
[14] Serro, A.P., Fernandes, A.C. and Jesus Vieira Saramago, B. (1997) Calcium Phosphate Deposition on Titanium Surfaces in the Presence of Fibronectin. Journal of Biomedical Materials Research Part A, 49, 345-352.
https://doi.org/10.1002/(SICI)1097-4636(20000305)49:3<345::AID-JBM7>3.0.CO;2-R
[15] Wei, D., Zhou, Y., Jia, D. and Wang, Y. (2008) Formation of CaTiO3/TiO2 Composite Coating on Titanium Alloy for Biomedical Applications. Journal of Biomedical Materials Research Part B Applied Biomaterials, 84, 444-451.
https://doi.org/10.1002/jbm.b.30890
[16] Anselme, K. (2000) Osteoblast Adhesion on Biomaterials. Biomaterials, 21,667-681.
https://doi.org/10.1016/S0142-9612(99)00242-2