鸟喙状Ni-Fe仿生结构的水热法可控合成及其耐磨性能研究
Controllable Hydrothermal Synthesis of Bi-onic Beak-Like Structures and Their Wear Properties Study
DOI: 10.12677/MS.2017.72027, PDF, HTML, XML, 下载: 1,538  浏览: 2,605  国家自然科学基金支持
作者: 赵 博:中车大连机车车辆有限公司,辽宁 大连;张 勇:大连交通大学,材料科学与工程学院,辽宁 大连
关键词: 水热法鸟喙状结构Ni-Fe涂层球墨铸铁Hydrothermal Beak-Like Structures Ni-Fe Coatings Spheroidal Graphite Cast Iron
摘要: 利用水热法在球墨铸铁表面制备了Ni-Fe复合涂层,并研究了涂层的耐磨性能。实验结果表明,通过水热反应在Ni-Fe复合涂层中有鸟喙状微观结构生成。经120℃水热反应及700℃后处理以后,鸟喙状结构原位增强Ni-Fe复合涂层的显微硬度为483 HV,是球墨铸铁基体硬度(262 HV)的1.8倍;在磨损实验中,Ni-Fe复合涂层的磨损失重明显低于球墨铸铁基体的磨损失重,显著提高了球墨铸铁基体的耐磨性能。水热反应中,微观结构择优生长方向的转换在涂层中形成鸟喙状微观结构;鸟喙状结构优异的载荷传递能力显著提高了Ni-Fe复合涂层的强韧性,使Ni-Fe复合涂层表现出优良的耐磨性能。
Abstract: Ni-Fe composite coating was synthesized on spheroidal graphite cast iron substrate by a hydro-thermal approach, and the wear properties of Ni-Fe coating were analyzed. The experimental re-sults demonstrated that beak-like structures were grown in Ni-Fe composite coating by hydro-thermal reactions. After 120˚C hydrothermal and subsequent 700˚C treatment, a high microhard-ness of 483 HV of beak-like structure in-situ reinforced Ni-Fe composite coating was achieved, about 1.8 times that of spheroidal graphite cast iron substrate (262 HV). During wear testing, the volume loss of Ni-Fe composite coating was obviously less than that of spheroidal graphite cast iron substrate, and the wear properties of spheroidal graphite cast iron were obviously increased. During hydrothermal reactions, the transformation of preferred growth directions of micostruc-tures resulted in beak-like structures. The excellent load transfer ability of beak-like structures greatly increased the strength and toughness of Ni-Fe composite coating so that Ni-Fe composite coating demonstrated good wear properties.
文章引用:赵博, 张勇. 鸟喙状Ni-Fe仿生结构的水热法可控合成及其耐磨性能研究[J]. 材料科学, 2017, 7(2): 212-218. https://doi.org/10.12677/MS.2017.72027

参考文献

[1] Cast Metals Development Ltd. (1992) Austempered Ductile-Iron Castings—Advantages, Production, Properties and Specifications. Materials & Design, 13, 285-297.
https://doi.org/10.1016/0261-3069(92)90191-J
[2] 张舞文, 马爱斌, 江静华, 等. 海洋工程用钢表面喷涂Zn、Al和Zn-55% Al伪合金涂层的耐蚀性[J]. 中国表面工程, 2011, 24(3): 59-65.
[3] Cai, C., Zhu, X.B., Zheng, G.Q., et al. (2011) Electrodeposition and Characterization of Nano-Structured Ni–SiC Composite Films. Surface and Coatings Technology, 205, 3448-3454.
https://doi.org/10.1016/j.surfcoat.2010.12.002
[4] Weng, F., Yu, H.J., Chen, C.Z., et al. (2016) Microstructure and Property of Composite Coatings on Titanium Alloy Deposited By Laser Cladding with Co42+TiN Mixed Powders. Journal of Alloys and Compounds, 686, 74-81.
https://doi.org/10.1016/j.jallcom.2016.05.319
[5] 黄清明. Fe-Ni纳米合金镀层结构的XRD表征[J]. 福州大学学报(自然科学版), 2011, 39(3): 450-454.
[6] 吴玉程, 舒霞, 解挺, 李广海, 张立德. Ni-W, Ni-Fe 合金纳米晶涂层电沉积与性能研究[J]. 中国表面工程, 2005, 18(3): 1-6.
[7] 冯皓, 邢广忠, 胡怡. 超厚功能性Ni-Fe合金镀层耐磨性研究[J]. 物理测试, 2002(1): 4-6.
[8] 李延祥, 文九巴, 祝要民, 黄金亮. Ni-Fe-Cr-B-Si涂层超塑扩散焊接的强化效应及耐磨性[J]. 金属学报, 1996, 32(5): 538-543.
[9] He, J.H., Wu, T.H., Hsin, C.L., et al. (2006) Beaklike SnO2 Nanorods with Strong Photoluminescent and Field-Emission Properties. Small, 2, 116-120.
https://doi.org/10.1002/smll.200500210
[10] 赵晓鹏, 周本濂, 罗春荣, 等. 短纤维增强复合材料的仿生模型 Ⅲ 脆性基体复合材料中哑铃状纤维的强化作用[J]. 金属学报, 1996, 32(4): 438-441.
[11] Chen, P.N., Xu, Y.F. and Peng, H.S. (2015) Hierarchically Arranged Helical Fibre Actuators Driven by Solvents and Vapours. Nature Nan-otechnology, 10, 1077-1083.
https://doi.org/10.1038/nnano.2015.198
[12] Zhang, Y., Ling, F. and Zhang, W.Z. (2016) Growth in Solution of Hooked Ni-Fe Fibers by Oriented Rotation and Attachment Approaches. International Journal of Minerals, Metallurgy, and Materials, 23, 466-473.
https://doi.org/10.1007/s12613-016-1257-5
[13] 孙玉绣, 张大伟, 金政. 纳米材料的制备方法及应用[M]. 北京: 中国纺织出版社, 2010: 114-118.
[14] Cao, H.L., Qian, X.F., Wang, C., et al. (2005) High Symmetric 18-Facet Polyhedron Nanocrystals of Cu7S4 with a Hollow Nanocage. Journal of the American Chemical Society, 127, 16024-16025.
https://doi.org/10.1021/ja055265y
[15] Ding, Y.C., Zheng, F. and Zhu, Z.T. (2016) Low-Temperature Seeding and Hydrothermal Growth of ZnO Nanorod on poly(3,4-ethylene dioxythiophene): Poly (Styrene Sulfonic Acid). Materials Letters, 183, 197-201.
https://doi.org/10.1016/j.matlet.2016.07.093
[16] Wang, Y.Y., Zhang, Q.L., Hu, L., et al. (2016) Synthesis of Alkalis Niobate Nanorods and Their Enhanced Piezoelectric Properties. Journal of Alloys and Compounds, 685, 1-7.
https://doi.org/10.1016/j.jallcom.2016.05.265
[17] Li, J., Yao, S.H., Zhou, H.M., et al. (2014) Preparation of LiMn0.4Fe0.6PO4/C Composite by a New Route Combining Solid-State Reaction with Hydrothermal Synthesis. Journal of Inorganic Materials, 29, 443-449.
https://doi.org/10.3724/sp.j.1077.2014.13672