特殊地质条件下换流站工程接地技术问题研究
Study on Grounding Technology of Convertor Station Project under Special Geological Conditions
DOI: 10.12677/JEE.2017.51013, PDF, HTML, XML, 下载: 1,856  浏览: 3,875 
作者: 丁永福, 袁清云, 寻 凯, 张 诚:国家电网公司直流建设分公司,北京;文习山:武汉大学电气工程学院,湖北 武汉
关键词: 特殊地质换流站接地边界元算法跨步电位差接触电位Special Geological Convertor Station Grounding Boundary Element Method Step Potential Difference Touch Potential Difference
摘要: 考虑到±800 kV灵州换流站工程所处地点的特殊性,即全岩石地质条件以及微风化特殊地质条件,首次在此类地质条件的接地研究中采用边界元算法进行建模分析。本文针对全岩石地质条件以及微风化特殊地质条件,并未采用传统的增设垂直接地体的措施,而采用了增设均压带以降低网内的跨步电位差、接触电位差和在超标处铺设高阻层的措施,通过增加与人体电阻率串联的地表电阻而减少通过人体的电流,从而允许更高的接触电压和跨步电压。
Abstract: Considering the particularity of Lingzhou ±800 kV converter station project location, namely, the whole rock geological conditions and the slightly weathered special geological conditions, it is the first time that the boundary element method is used for modeling and analysis in the such of geological conditions grounding research. Based on the whole rock geological conditions and the  slightly weathered special geological conditions, the traditional measures that add vertical grounding body fail to be used, the average voltage zone is adopted to reduce the step potential difference and contact potential difference within the network and the high resistance layer is paved in the exceed standard place; the current through the human body is reduced by increasing the surface resistivity series connect the human body, thereby allowing the higher touch voltage and step voltage.
文章引用:丁永福, 袁清云, 寻凯, 张诚, 文习山. 特殊地质条件下换流站工程接地技术问题研究[J]. 电气工程, 2017, 5(1): 105-114. https://doi.org/10.12677/JEE.2017.51013

参考文献

[1] Harrington, R.F. (1968) Field Computation by Moment Methods. The Macmillan Company, London.
[2] Giao, T.N. and Sarma, M.P. (1972) Effects of Two Layer Earth on the Electric Field near HVDC Ground Electrodes. IEEE Transactions on Power Apparatus and Systems, 91, 36-41.
[3] Dawalibi, F.P. and Mukhedkar, D. (1976) Multi-Step Analysis of Interconnected Electrodes. IEEE Transactions on Power Apparatus and Systems, 95, 113-119.
https://doi.org/10.1109/T-PAS.1976.32083
[4] Heppe, R.H. (1979) Computation of Potential at Surface Above an Energized Ground or Other Electrode. IEEE Transactions on Power Apparatus and Systems, 98, 153-158.
[5] Ma, J., Dawalibi, F.P. and Daily, W.K. (1993) Analysis of Grounding Systems in Soils with Hemispherical Layering. IEEE Transactions on Power Delivery, 8, 1773-1781.
https://doi.org/10.1109/61.248284
[6] Jinxi, M. and Dawlibi, F.P. (2000) Analysis of Grounding Systems in Soils with Cylindrical Soil Volumes. IEEE Transactions on Power Delivery, 15, 913-918.
https://doi.org/10.1109/61.871352
[7] Jinxi, M. and Dawlibi, F.P. (2002) Analysis of Grounding Systems in Soils with Finite Volumes of Different Resistivities. IEEE Transactions on Power Delivery, 17, 596-602.
https://doi.org/10.1109/61.997944
[8] Melipoulos, A.P., Xia, F., Joy, E.B., et al. (1993) An Advanced Computer Model for Grounding System Analysis. IEEE Transactions on Power Delivery, 8, 13-23.
https://doi.org/10.1109/61.180314
[9] Dawalibi, F.P., Ma, J. and Southey, R.D. (1994) Behaviour of Grounding Systems in Multilayer Soils: A Parametric Analysis. IEEE Transactions on Power Delivery, 9, 334-342.
https://doi.org/10.1109/61.277704
[10] Chow, Y.L. and Salama, M.M. (1994) A Simplified Method for Calculating the Substation Grounding Grid Resistance. IEEE Transactions on Power Delivery, 9, 736-742.
https://doi.org/10.1109/61.296251
[11] Chow, Y.L., Yang, J.J. and Srivastava, K.D. (1995) Grounding Resistance of Buried Electrodes in Multi-Layer Earth Predicted by Simple Voltage Measurements along Each Surface—A Theoretical Discussion. IEEE Transactions on Power Delivery, 10, 707-715.
https://doi.org/10.1109/61.400861
[12] Ma, J., Dawalibi, P. and Southey, R.D. (1996) On the Equivalence of Uniform and Two-Layer Soils to Multilayer Soils in the Analysis of Grounding Systems. Generation, Transmission and Distribution, 143, 49-55.
[13] Chow, Y.L., Elsherbiny, M.M. and Salama, M.M. (1997) Surface Voltages and Resistance of Grounding Systems of Grid and Rods in Two-Layer Earth by the Rapid Galerkin’s Moment Method. IEEE Transactions on Power Delivery, 12, 179-185.
https://doi.org/10.1109/61.568239
[14] Hyung-Soo, L., Jung-Hoon, K., Dawalibi, F.P., et al. (1998) Efficient Ground Grid Designs in Layered Soils. IEEE Transactions on Power Delivery, 13, 745-751.
https://doi.org/10.1109/61.686969
[15] Kostic, M.B. (1998) Analysis of Complex Grounding Systems Consisting of Foundation Grounding Systems with External Grids. IEEE Transactions on Power Delivery, 13, 752-756.
[16] Qingbo, M., Jinliang, H., Dawalibi, F.P., et al. (1999) A New Method to Decrease Ground Resistances of Substation Grounding Systems in High Resistivity Regions. IEEE Transactions on Power Delivery, 14, 911-916.
https://doi.org/10.1109/61.772333
[17] Guemes, J.A. and Hernando, F.E. (2004) Method for Calculating the Ground Resistance of Grounding Grids Using FEM. IEEE Transactions on Power Delivery, 19, 595-600.
https://doi.org/10.1109/TPWRD.2004.824761
[18] Guemes-Alonso, J.A., Hernando-Fernandez, F.E., Rodriguez-Bona, F. and Ruiz-Moll, J.M. (2006) A Practical Approach for Determining the Ground Resistance of Grounding Grids. IEEE Transactions on Power Delivery, 21, 1261- 1266.
https://doi.org/10.1109/TPWRD.2006.874121
[19] Habjanic, A. and Trlep, M. (2006) The Simulation of the Soil Ionization Phenomenon around the Grounding System by the Finite Element Method. IEEE Transactions on Magnetics, 42, 867-870.
https://doi.org/10.1109/TMAG.2006.871625
[20] Trlep, M., Hamler, A., Jesenik, M., et al. (2003) The FEM-BEM Analysis of Complex Grounding Systems. IEEE Transactions on Magnetics, 39, 1155-1158.
[21] Machias, A.V., Dialynas, E.N. and Protopapas, C.A. (1989) An Expert System Approach to Designing and Testing Substation Grounding Grids. IEEE Transactions on Power Delivery, 4, 234-240.
https://doi.org/10.1109/61.19209
[22] Sverak, J.G., Wang, W., Gervais, Y., et al. (1992) A Probabilistic Method for the Design of Power Grounding Systems. IEEE Transactions on Power Delivery, 7, 1196-1206.
https://doi.org/10.1109/61.141831
[23] 陈慈萱. 边界元法在接地计算中的应用——发变电站地网接地电阻的计算[J]. 高电压技术, 1984(2): 25-29.
[24] 文习山. 接地体接地参数的数值计算和模拟实验[D]: [硕士学位论文]. 武汉: 武汉水利电力学院, 1985.
[25] 文习山. 三层土壤中计算接地参数的程序及一些计算结果[J]. 电力建设, 1987, 8(1): 16-20.
[26] Xishan, W. (1994) Industry Frequency Performance of Grounding Grids. Proceedings of International Conference on Power Systems, Bei-jing.
[27] 孙结中, 刘力. 运用等值复数镜像法求解复合分层土壤结构的格林函数[J]. 中国电机工程学报, 2003, 23(9): 146- 151.
[28] 郭剑, 邹军, 何金良, 等. 水平分层土壤中点电流源格林函数的递推算法[J]. 中国电机工程学报, 2004(7): 101-105.
[29] 赵志斌, 张波, 崔翔, 等. 分层土壤中点电流源电流场计算的递推算法[J]. 华北电力大学学报, 2003(1): 22-24.
[30] 李光中, 陈彩屏, 赵初元. 边界元法在基础接地中的应用—混凝土基础桩接地电阻的计算[J]. 电工技术学报, 1991(3): 59-63.
[31] Cidras, J., Otero, A.F. and Garrido, C. (2000) Nodal Frequency Analysis of Grounding Systems Considering the Soil Ionization Effect. IEEE Transactions on Power Delivery, 15, 103-107.
[32] 彭向阳, 文习山, 陈慈萱. 大型水电站接地网接地电阻的初步计算 [J]. 中国电力, 1997, 30(7): 10-13.
[33] Ma, J. and Dawalibi, F.P. (2002) Analysis of Grounding Systems in Soils with Finite Volumes of Different Resistivities. IEEE Transactions on Power Delivery, 17, 594-602.
[34] Calixto, W.P., Coimbra, A.P., Alvarenga, B., Molin, J.P., Cardoso, A. and Neto, L. M. (2012) 3-D Soil Stratification Methodology for Geoelectrical Prospection. IEEE Transactions on Power Delivery, 27, 1636-1643.